You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							476 lines
						
					
					
						
							16 KiB
						
					
					
				
			
		
		
	
	
							476 lines
						
					
					
						
							16 KiB
						
					
					
				| /////////////////////////////////////////////////////////////////////////////////// | |
| /// OpenGL Mathematics (glm.g-truc.net) | |
| /// | |
| /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) | |
| /// Permission is hereby granted, free of charge, to any person obtaining a copy | |
| /// of this software and associated documentation files (the "Software"), to deal | |
| /// in the Software without restriction, including without limitation the rights | |
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| /// copies of the Software, and to permit persons to whom the Software is | |
| /// furnished to do so, subject to the following conditions: | |
| ///  | |
| /// The above copyright notice and this permission notice shall be included in | |
| /// all copies or substantial portions of the Software. | |
| ///  | |
| /// Restrictions: | |
| ///		By making use of the Software for military purposes, you choose to make | |
| ///		a Bunny unhappy. | |
| ///  | |
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
| /// THE SOFTWARE. | |
| /// | |
| /// @file test/gtx/gtx_fast_trigonometry.cpp | |
| /// @date 2013-10-25 / 2014-11-25 | |
| /// @author Christophe Riccio | |
| /////////////////////////////////////////////////////////////////////////////////// | |
|  | |
| #include <glm/gtc/type_precision.hpp> | |
| #include <glm/gtx/fast_trigonometry.hpp> | |
| #include <glm/gtx/integer.hpp> | |
| #include <glm/gtx/common.hpp> | |
| #include <glm/gtc/constants.hpp> | |
| #include <glm/gtc/ulp.hpp> | |
| #include <glm/gtc/vec1.hpp> | |
| #include <glm/trigonometric.hpp> | |
| #include <cmath> | |
| #include <ctime> | |
| #include <cstdio> | |
| #include <vector> | |
|  | |
| namespace fastCos | |
| { | |
| 	int perf(bool NextFloat) | |
| 	{ | |
| 		const float begin = -glm::pi<float>(); | |
| 		const float end = glm::pi<float>(); | |
| 		float result = 0.f; | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::fastCos(i); | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::cos(i); | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock(); | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1; | |
| 		const std::clock_t time_default = timestamp3 - timestamp2; | |
| 		std::printf("fastCos Time %d clocks\n", static_cast<unsigned int>(time_fast)); | |
| 		std::printf("cos Time %d clocks\n", static_cast<unsigned int>(time_default)); | |
| 
 | |
| 		return time_fast <= time_default ? 0 : 1; | |
| 	} | |
| }//namespace fastCos | |
|  | |
| namespace fastSin | |
| { | |
| 	/* | |
| 	float sin(float x) { | |
| 	float temp; | |
| 	temp = (x + M_PI) / ((2 * M_PI) - M_PI); | |
| 	return limited_sin((x + M_PI) - ((2 * M_PI) - M_PI) * temp)); | |
| 	} | |
| 	*/ | |
| 
 | |
| 	int perf(bool NextFloat) | |
| 	{ | |
| 		const float begin = -glm::pi<float>(); | |
| 		const float end = glm::pi<float>(); | |
| 		float result = 0.f; | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::fastSin(i); | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::sin(i); | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock(); | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1; | |
| 		const std::clock_t time_default = timestamp3 - timestamp2; | |
| 		std::printf("fastSin Time %d clocks\n", static_cast<unsigned int>(time_fast)); | |
| 		std::printf("sin Time %d clocks\n", static_cast<unsigned int>(time_default)); | |
| 
 | |
| 		return time_fast <= time_default ? 0 : 1; | |
| 	} | |
| }//namespace fastSin | |
|  | |
| namespace fastTan | |
| { | |
| 	int perf(bool NextFloat) | |
| 	{ | |
| 		const float begin = -glm::pi<float>(); | |
| 		const float end = glm::pi<float>(); | |
| 		float result = 0.f; | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::fastTan(i); | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock(); | |
| 		for (float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::tan(i); | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock(); | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1; | |
| 		const std::clock_t time_default = timestamp3 - timestamp2; | |
| 		std::printf("fastTan Time %d clocks\n", static_cast<unsigned int>(time_fast)); | |
| 		std::printf("tan Time %d clocks\n", static_cast<unsigned int>(time_default)); | |
| 
 | |
| 		return time_fast <= time_default ? 0 : 1; | |
| 	} | |
| }//namespace fastTan | |
|  | |
| namespace fastAcos | |
| { | |
| 	int perf(bool NextFloat) | |
| 	{ | |
| 		const float begin = -glm::pi<float>(); | |
| 		const float end = glm::pi<float>(); | |
| 		float result = 0.f; | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::fastAcos(i); | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::acos(i); | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock(); | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1; | |
| 		const std::clock_t time_default = timestamp3 - timestamp2; | |
| 
 | |
| 		std::printf("fastAcos Time %d clocks\n", static_cast<unsigned int>(time_fast)); | |
| 		std::printf("acos Time %d clocks\n", static_cast<unsigned int>(time_default)); | |
| 
 | |
| 		return time_fast <= time_default ? 0 : 1; | |
| 	} | |
| }//namespace fastAcos | |
|  | |
| namespace fastAsin | |
| { | |
| 	int perf(bool NextFloat) | |
| 	{ | |
| 		const float begin = -glm::pi<float>(); | |
| 		const float end = glm::pi<float>(); | |
| 		float result = 0.f; | |
| 		const std::clock_t timestamp1 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::fastAsin(i); | |
| 		const std::clock_t timestamp2 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::asin(i); | |
| 		const std::clock_t timestamp3 = std::clock(); | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1; | |
| 		const std::clock_t time_default = timestamp3 - timestamp2; | |
| 		std::printf("fastAsin Time %d clocks\n", static_cast<unsigned int>(time_fast)); | |
| 		std::printf("asin Time %d clocks\n", static_cast<unsigned int>(time_default)); | |
| 
 | |
| 		return time_fast <= time_default ? 0 : 1; | |
| 	} | |
| }//namespace fastAsin | |
|  | |
| namespace fastAtan | |
| { | |
| 	int perf(bool NextFloat) | |
| 	{ | |
| 		const float begin = -glm::pi<float>(); | |
| 		const float end = glm::pi<float>(); | |
| 		float result = 0.f; | |
| 		const std::clock_t timestamp1 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::fastAtan(i); | |
| 		const std::clock_t timestamp2 = std::clock(); | |
| 		for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f) | |
| 			result = glm::atan(i); | |
| 		const std::clock_t timestamp3 = std::clock(); | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1; | |
| 		const std::clock_t time_default = timestamp3 - timestamp2; | |
| 		std::printf("fastAtan Time %d clocks\n", static_cast<unsigned int>(time_fast)); | |
| 		std::printf("atan Time %d clocks\n", static_cast<unsigned int>(time_default)); | |
| 
 | |
| 		return time_fast <= time_default ? 0 : 1; | |
| 	} | |
| }//namespace fastAtan | |
|  | |
| namespace taylorCos | |
| { | |
| 	glm::vec4 const AngleShift(0.0f, glm::pi<float>() * 0.5f, glm::pi<float>() * 1.0f, glm::pi<float>() * 1.5f); | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesNewCos(vecType<T, P> const & x) | |
| 	{ | |
| 		vecType<T, P> const Powed2(x * x); | |
| 		vecType<T, P> const Powed4(Powed2 * Powed2); | |
| 		vecType<T, P> const Powed6(Powed4 * Powed2); | |
| 		vecType<T, P> const Powed8(Powed4 * Powed4); | |
| 
 | |
| 		return static_cast<T>(1) | |
| 			- Powed2 * static_cast<T>(0.5) | |
| 			+ Powed4 * static_cast<T>(0.04166666666666666666666666666667) | |
| 			- Powed6 * static_cast<T>(0.00138888888888888888888888888889) | |
| 			+ Powed8 * static_cast<T>(2.4801587301587301587301587301587e-5); | |
| 	} | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesNewCos6(vecType<T, P> const & x) | |
| 	{ | |
| 		vecType<T, P> const Powed2(x * x); | |
| 		vecType<T, P> const Powed4(Powed2 * Powed2); | |
| 		vecType<T, P> const Powed6(Powed4 * Powed2); | |
| 
 | |
| 		return static_cast<T>(1) | |
| 			- Powed2 * static_cast<T>(0.5) | |
| 			+ Powed4 * static_cast<T>(0.04166666666666666666666666666667) | |
| 			- Powed6 * static_cast<T>(0.00138888888888888888888888888889); | |
| 	} | |
| 
 | |
| 	template <glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<float, P> fastAbs(vecType<float, P> x) | |
| 	{ | |
| 		int* Pointer = reinterpret_cast<int*>(&x[0]); | |
| 		Pointer[0] &= 0x7fffffff; | |
| 		Pointer[1] &= 0x7fffffff; | |
| 		Pointer[2] &= 0x7fffffff; | |
| 		Pointer[3] &= 0x7fffffff; | |
| 		return x; | |
| 	} | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> fastCosNew(vecType<T, P> const & x) | |
| 	{ | |
| 		vecType<T, P> const Angle0_PI(fastAbs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); | |
| 		return taylorSeriesNewCos6(x); | |
| /* | |
| 		vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>()))); | |
|  | |
| 		vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi)); | |
| 		vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi)); | |
| 		vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI); | |
|  | |
| 		return ReturnSign * taylorSeriesNewCos(SectionAngle); | |
| */ | |
| 	} | |
| 
 | |
| 	int perf_fastCosNew(float Begin, float End, std::size_t Samples) | |
| 	{ | |
| 		std::vector<glm::vec4> Results; | |
| 		Results.resize(Samples); | |
| 
 | |
| 		float Steps = (End - Begin) / Samples; | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock(); | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Results[i] = fastCosNew(AngleShift + glm::vec4(Begin + Steps * i)); | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock(); | |
| 
 | |
| 		std::printf("fastCosNew %ld clocks\n", TimeStampEnd - TimeStampBegin); | |
| 
 | |
| 		int Error = 0; | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> deterministic_fmod(vecType<T, P> const & x, T y) | |
| 	{ | |
| 		return x - y * trunc(x / y); | |
| 	} | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> fastCosDeterminisctic(vecType<T, P> const & x) | |
| 	{ | |
| 		vecType<T, P> const Angle0_PI(abs(deterministic_fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); | |
| 		vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>()))); | |
| 
 | |
| 		vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi)); | |
| 		vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi)); | |
| 		vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI); | |
| 
 | |
| 		return ReturnSign * taylorSeriesNewCos(SectionAngle); | |
| 	} | |
| 
 | |
| 	int perf_fastCosDeterminisctic(float Begin, float End, std::size_t Samples) | |
| 	{ | |
| 		std::vector<glm::vec4> Results; | |
| 		Results.resize(Samples); | |
| 
 | |
| 		float Steps = (End - Begin) / Samples; | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock(); | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Results[i] = taylorCos::fastCosDeterminisctic(AngleShift + glm::vec4(Begin + Steps * i)); | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock(); | |
| 
 | |
| 		std::printf("fastCosDeterminisctic %ld clocks\n", TimeStampEnd - TimeStampBegin); | |
| 
 | |
| 		int Error = 0; | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesRefCos(vecType<T, P> const & x) | |
| 	{ | |
| 		return static_cast<T>(1) | |
| 			- (x * x) / glm::factorial(static_cast<T>(2)) | |
| 			+ (x * x * x * x) / glm::factorial(static_cast<T>(4)) | |
| 			- (x * x * x * x * x * x) / glm::factorial(static_cast<T>(6)) | |
| 			+ (x * x * x * x * x * x * x * x) / glm::factorial(static_cast<T>(8)); | |
| 	} | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType> | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> fastRefCos(vecType<T, P> const & x) | |
| 	{ | |
| 		vecType<T, P> const Angle0_PI(glm::abs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); | |
| //		return taylorSeriesRefCos(Angle0_PI); | |
|  | |
| 		vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>()))); | |
| 
 | |
| 		vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi)); | |
| 		vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi)); | |
| 		vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI); | |
| 
 | |
| 		return ReturnSign * taylorSeriesRefCos(SectionAngle); | |
| 	} | |
| 
 | |
| 	int perf_fastCosRef(float Begin, float End, std::size_t Samples) | |
| 	{ | |
| 		std::vector<glm::vec4> Results; | |
| 		Results.resize(Samples); | |
| 
 | |
| 		float Steps = (End - Begin) / Samples; | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock(); | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Results[i] = taylorCos::fastRefCos(AngleShift + glm::vec4(Begin + Steps * i)); | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock(); | |
| 
 | |
| 		std::printf("fastCosRef %ld clocks\n", TimeStampEnd - TimeStampBegin); | |
| 
 | |
| 		int Error = 0; | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int perf_fastCosOld(float Begin, float End, std::size_t Samples) | |
| 	{ | |
| 		std::vector<glm::vec4> Results; | |
| 		Results.resize(Samples); | |
| 
 | |
| 		float Steps = (End - Begin) / Samples; | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock(); | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Results[i] = glm::fastCos(AngleShift + glm::vec4(Begin + Steps * i)); | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock(); | |
| 
 | |
| 		std::printf("fastCosOld %ld clocks\n", TimeStampEnd - TimeStampBegin); | |
| 
 | |
| 		int Error = 0; | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int perf_cos(float Begin, float End, std::size_t Samples) | |
| 	{ | |
| 		std::vector<glm::vec4> Results; | |
| 		Results.resize(Samples); | |
| 
 | |
| 		float Steps = (End - Begin) / Samples; | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock(); | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Results[i] = glm::cos(AngleShift + glm::vec4(Begin + Steps * i)); | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock(); | |
| 
 | |
| 		std::printf("cos %ld clocks\n", TimeStampEnd - TimeStampBegin); | |
| 
 | |
| 		int Error = 0; | |
| 		for(std::size_t i = 0; i < Samples; ++i) | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int perf(std::size_t const Samples) | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		float const Begin = -glm::pi<float>(); | |
| 		float const End = glm::pi<float>(); | |
| 
 | |
| 		Error += perf_cos(Begin, End, Samples); | |
| 		Error += perf_fastCosOld(Begin, End, Samples); | |
| 		Error += perf_fastCosRef(Begin, End, Samples); | |
| 		//Error += perf_fastCosNew(Begin, End, Samples); | |
| 		Error += perf_fastCosDeterminisctic(Begin, End, Samples); | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		//for(float Angle = -4.0f * glm::pi<float>(); Angle < 4.0f * glm::pi<float>(); Angle += 0.1f) | |
| 		//for(float Angle = -720.0f; Angle < 720.0f; Angle += 0.1f) | |
| 		for(float Angle = 0.0f; Angle < 180.0f; Angle += 0.1f) | |
| 		{ | |
| 			float const modAngle = std::fmod(glm::abs(Angle), 360.f); | |
| 			assert(modAngle >= 0.0f && modAngle <= 360.f); | |
| 			float const radAngle = glm::radians(modAngle); | |
| 			float const Cos0 = std::cos(radAngle); | |
| 
 | |
| 			float const Cos1 = taylorCos::fastRefCos(glm::fvec1(radAngle)).x; | |
| 			Error += glm::abs(Cos1 - Cos0) < 0.1f ? 0 : 1; | |
| 
 | |
| 			float const Cos2 = taylorCos::fastCosNew(glm::fvec1(radAngle)).x; | |
| 			//Error += glm::abs(Cos2 - Cos0) < 0.1f ? 0 : 1; | |
|  | |
| 			assert(!Error); | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace taylorCos | |
|  | |
| int main() | |
| { | |
| 	int Error(0); | |
| 
 | |
| 	Error += ::taylorCos::test(); | |
| 	Error += ::taylorCos::perf(1000); | |
| 
 | |
| #	ifdef NDEBUG | |
| 		::fastCos::perf(false); | |
| 		::fastSin::perf(false); | |
| 		::fastTan::perf(false); | |
| 		::fastAcos::perf(false); | |
| 		::fastAsin::perf(false); | |
| 		::fastAtan::perf(false); | |
| #	endif//NDEBUG | |
|  | |
| 	return Error; | |
| }
 | |
| 
 |