You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							515 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							515 lines
						
					
					
						
							14 KiB
						
					
					
				/////////////////////////////////////////////////////////////////////////////////////////////////// | 
						|
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////// | 
						|
// Created : 2010-09-16 | 
						|
// Updated : 2010-09-16 | 
						|
// Licence : This source is under MIT licence | 
						|
// File    : test/gtx/bit.cpp | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////// | 
						|
 | 
						|
#define GLM_FORCE_RADIANS | 
						|
#include <glm/gtx/bit.hpp> | 
						|
#include <glm/gtc/type_precision.hpp> | 
						|
 | 
						|
#if(GLM_ARCH != GLM_ARCH_PURE) | 
						|
#	include <glm/detail/intrinsic_integer.hpp> | 
						|
#endif | 
						|
 | 
						|
#include <iostream> | 
						|
#include <vector> | 
						|
#include <ctime> | 
						|
 | 
						|
enum result | 
						|
{ | 
						|
	SUCCESS, | 
						|
	FAIL, | 
						|
	ASSERT, | 
						|
	STATIC_ASSERT | 
						|
}; | 
						|
 | 
						|
namespace bitRevert | 
						|
{ | 
						|
	template <typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		genType		Return; | 
						|
		result		Result; | 
						|
	}; | 
						|
 | 
						|
	typedef type<glm::uint64> typeU64; | 
						|
 | 
						|
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) | 
						|
	typeU64 const Data64[] = | 
						|
	{ | 
						|
		{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS}, | 
						|
		{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS}, | 
						|
		{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS}, | 
						|
	}; | 
						|
#else | 
						|
	typeU64 const Data64[] = | 
						|
	{ | 
						|
		{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, | 
						|
		{0x0000000000000000, 0x0000000000000000, SUCCESS}, | 
						|
		{0xf000000000000000, 0x000000000000000f, SUCCESS}, | 
						|
	}; | 
						|
#endif | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		glm::uint32 count = sizeof(Data64) / sizeof(typeU64); | 
						|
		 | 
						|
		for(glm::uint32 i = 0; i < count; ++i) | 
						|
		{ | 
						|
			glm::uint64 Return = glm::bitRevert( | 
						|
				Data64[i].Value); | 
						|
			 | 
						|
			bool Compare = Data64[i].Return == Return; | 
						|
			 | 
						|
			if(Data64[i].Result == SUCCESS && Compare) | 
						|
				continue; | 
						|
			else if(Data64[i].Result == FAIL && !Compare) | 
						|
				continue; | 
						|
			 | 
						|
			std::cout << "glm::extractfield test fail on test " << i << std::endl; | 
						|
			return 1; | 
						|
		} | 
						|
		 | 
						|
		return 0; | 
						|
	} | 
						|
}//bitRevert | 
						|
 | 
						|
namespace bitfieldInterleave | 
						|
{ | 
						|
	inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		glm::uint64 REG1; | 
						|
		glm::uint64 REG2; | 
						|
 | 
						|
		REG1 = x; | 
						|
		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
		REG2 = y; | 
						|
		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
		return REG1 | (REG2 << 1); | 
						|
	} | 
						|
 | 
						|
	inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		glm::uint64 REG1; | 
						|
		glm::uint64 REG2; | 
						|
 | 
						|
		REG1 = x; | 
						|
		REG2 = y; | 
						|
 | 
						|
		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
 | 
						|
		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
 | 
						|
		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
 | 
						|
		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
 | 
						|
		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
		return REG1 | (REG2 << 1); | 
						|
	} | 
						|
 | 
						|
	inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		static glm::uint64 const Mask[5] =  | 
						|
		{ | 
						|
			0x5555555555555555, | 
						|
			0x3333333333333333, | 
						|
			0x0F0F0F0F0F0F0F0F, | 
						|
			0x00FF00FF00FF00FF, | 
						|
			0x0000FFFF0000FFFF | 
						|
		}; | 
						|
 | 
						|
		glm::uint64 REG1 = x; | 
						|
		glm::uint64 REG2 = y; | 
						|
		for(int i = 4; i >= 0; --i) | 
						|
		{ | 
						|
			REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; | 
						|
			REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; | 
						|
		} | 
						|
 | 
						|
		return REG1 | (REG2 << 1); | 
						|
	} | 
						|
 | 
						|
#if(GLM_ARCH != GLM_ARCH_PURE) | 
						|
	inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; | 
						|
 | 
						|
		__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | 
						|
		__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | 
						|
		__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | 
						|
		__m128i const Mask1 = _mm_set1_epi32(0x33333333); | 
						|
		__m128i const Mask0 = _mm_set1_epi32(0x55555555); | 
						|
 | 
						|
		__m128i Reg1; | 
						|
		__m128i Reg2; | 
						|
 | 
						|
		// REG1 = x; | 
						|
		// REG2 = y; | 
						|
		Reg1 = _mm_load_si128((__m128i*)Array); | 
						|
 | 
						|
		//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask4); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		//REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask3); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		//REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 4); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask2); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		//REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask1); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
		//REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask0); | 
						|
 | 
						|
		//return REG1 | (REG2 << 1); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg2 = _mm_srli_si128(Reg2, 8); | 
						|
		Reg1 = _mm_or_si128(Reg1, Reg2); | 
						|
	 | 
						|
		GLM_ALIGN(16) glm::uint64 Result[2]; | 
						|
		_mm_store_si128((__m128i*)Result, Reg1); | 
						|
 | 
						|
		return Result[0]; | 
						|
	} | 
						|
 | 
						|
	inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		glm::uint32 const Array[4] = {x, 0, y, 0}; | 
						|
 | 
						|
		__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | 
						|
		__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | 
						|
		__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | 
						|
		__m128i const Mask1 = _mm_set1_epi32(0x33333333); | 
						|
		__m128i const Mask0 = _mm_set1_epi32(0x55555555); | 
						|
 | 
						|
		__m128i Reg1; | 
						|
		__m128i Reg2; | 
						|
 | 
						|
		// REG1 = x; | 
						|
		// REG2 = y; | 
						|
		Reg1 = _mm_loadu_si128((__m128i*)Array); | 
						|
 | 
						|
		//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask4); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		//REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask3); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		//REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 4); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask2); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		//REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask1); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
		//REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask0); | 
						|
 | 
						|
		//return REG1 | (REG2 << 1); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg2 = _mm_srli_si128(Reg2, 8); | 
						|
		Reg1 = _mm_or_si128(Reg1, Reg2); | 
						|
	 | 
						|
		glm::uint64 Result[2]; | 
						|
		_mm_storeu_si128((__m128i*)Result, Reg1); | 
						|
 | 
						|
		return Result[0]; | 
						|
	} | 
						|
#endif//(GLM_ARCH != GLM_ARCH_PURE) | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		glm::uint32 x_max = 1 << 11; | 
						|
		glm::uint32 y_max = 1 << 10; | 
						|
 | 
						|
		// ALU | 
						|
		std::vector<glm::uint64> Data(x_max * y_max); | 
						|
		std::vector<glm::u32vec2> Param(x_max * y_max); | 
						|
		for(glm::uint32 i = 0; i < Param.size(); ++i) | 
						|
			Param[i] = glm::u32vec2(i % x_max, i / y_max); | 
						|
 | 
						|
		{ | 
						|
			for(glm::uint32 y = 0; y < (1 << 10); ++y) | 
						|
			for(glm::uint32 x = 0; x < (1 << 10); ++x) | 
						|
			{ | 
						|
				glm::uint64 A = glm::bitfieldInterleave(x, y); | 
						|
				glm::uint64 B = fastBitfieldInterleave(x, y); | 
						|
				glm::uint64 C = loopBitfieldInterleave(x, y); | 
						|
				glm::uint64 D = interleaveBitfieldInterleave(x, y); | 
						|
 | 
						|
				assert(A == B); | 
						|
				assert(A == C); | 
						|
				assert(A == D); | 
						|
 | 
						|
#				if(GLM_ARCH != GLM_ARCH_PURE) | 
						|
					glm::uint64 E = sseBitfieldInterleave(x, y); | 
						|
					glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); | 
						|
					assert(A == E); | 
						|
					assert(A == F); | 
						|
 | 
						|
					__m128i G = glm::detail::_mm_bit_interleave_si128(_mm_set_epi32(0, y, 0, x)); | 
						|
					glm::uint64 Result[2]; | 
						|
					_mm_storeu_si128((__m128i*)Result, G); | 
						|
					assert(A == Result[0]); | 
						|
#				endif//(GLM_ARCH != GLM_ARCH_PURE) | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			for(glm::uint8 y = 0; y < 127; ++y) | 
						|
			for(glm::uint8 x = 0; x < 127; ++x) | 
						|
			{ | 
						|
				glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y))); | 
						|
				glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y))); | 
						|
				glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y))); | 
						|
 | 
						|
				glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); | 
						|
				glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); | 
						|
				glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); | 
						|
 | 
						|
				assert(D == E); | 
						|
				assert(D == F); | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "glm::bitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "fastBitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "loopBitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "interleaveBitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
 | 
						|
#		if(GLM_ARCH != GLM_ARCH_PURE) | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "sseBitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
#		endif//(GLM_ARCH != GLM_ARCH_PURE) | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "glm::detail::bitfieldInterleave Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
 | 
						|
#		if(GLM_ARCH != GLM_ARCH_PURE) | 
						|
		{ | 
						|
			// SIMD | 
						|
			std::vector<__m128i> SimdData(x_max * y_max); | 
						|
			std::vector<__m128i> SimdParam(x_max * y_max); | 
						|
			for(int i = 0; i < SimdParam.size(); ++i) | 
						|
				SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0); | 
						|
 | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < SimdData.size(); ++i) | 
						|
				SimdData[i] = glm::detail::_mm_bit_interleave_si128(SimdParam[i]); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl; | 
						|
		} | 
						|
#		endif//(GLM_ARCH != GLM_ARCH_PURE) | 
						|
 | 
						|
		return 0; | 
						|
	} | 
						|
} | 
						|
 | 
						|
namespace bitfieldInterleave3 | 
						|
{ | 
						|
	template <typename PARAM, typename RET> | 
						|
	inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) | 
						|
	{ | 
						|
		RET Result = 0;  | 
						|
		for(RET i = 0; i < sizeof(PARAM) * 8; ++i) | 
						|
		{ | 
						|
			Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); | 
						|
			Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); | 
						|
			Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		glm::uint16 x_max = 1 << 11; | 
						|
		glm::uint16 y_max = 1 << 11; | 
						|
		glm::uint16 z_max = 1 << 11; | 
						|
 | 
						|
		for(glm::uint16 z = 0; z < z_max; z += 27) | 
						|
		for(glm::uint16 y = 0; y < y_max; y += 27) | 
						|
		for(glm::uint16 x = 0; x < x_max; x += 27) | 
						|
		{ | 
						|
			glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); | 
						|
			glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); | 
						|
			Error += ResultA == ResultB ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
} | 
						|
 | 
						|
namespace bitfieldInterleave4 | 
						|
{ | 
						|
	template <typename PARAM, typename RET> | 
						|
	inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) | 
						|
	{ | 
						|
		RET const v[4] = {x, y, z, w}; | 
						|
		RET Result = 0;  | 
						|
		for(RET i = 0; i < sizeof(PARAM) * 8; i++) | 
						|
		{ | 
						|
			Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); | 
						|
			Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); | 
						|
			Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); | 
						|
			Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		glm::uint16 x_max = 1 << 11; | 
						|
		glm::uint16 y_max = 1 << 11; | 
						|
		glm::uint16 z_max = 1 << 11; | 
						|
		glm::uint16 w_max = 1 << 11; | 
						|
 | 
						|
		for(glm::uint16 w = 0; w < w_max; w += 27) | 
						|
		for(glm::uint16 z = 0; z < z_max; z += 27) | 
						|
		for(glm::uint16 y = 0; y < y_max; y += 27) | 
						|
		for(glm::uint16 x = 0; x < x_max; x += 27) | 
						|
		{ | 
						|
			glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); | 
						|
			glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); | 
						|
			Error += ResultA == ResultB ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
} | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	int Error(0); | 
						|
 | 
						|
	Error += ::bitfieldInterleave3::test(); | 
						|
	Error += ::bitfieldInterleave4::test(); | 
						|
	Error += ::bitfieldInterleave::test(); | 
						|
	Error += ::bitRevert::test(); | 
						|
 | 
						|
	return Error; | 
						|
}
 | 
						|
 |