OpenGL Mathematics (GLM)
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
 
 
 

198 lines
6.0 KiB

///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2009 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-05-21
// Updated : 2010-04-29
// Licence : This source is under MIT License
// File : glm/gtc/quaternion.hpp
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////
// ToDo:
// - Study constructors with angles and axis
// - Study constructors with vec3 that are the imaginary component of quaternion
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef glm_gtc_quaternion
#define glm_gtc_quaternion
// Dependency:
#include "../glm.hpp"
namespace glm
{
namespace test{
bool main_gtc_quaternion();
}//namespace test
namespace detail
{
//! \brief Template for quaternion.
//! From GLM_GTC_quaternion extension.
template <typename valType>
class tquat
{
public:
valType x, y, z, w;
// Constructors
tquat();
explicit tquat(valType const & s, tvec3<valType> const & v);
explicit tquat(valType const & w, valType const & x, valType const & y, valType const & z);
// Convertions
//explicit tquat(valType const & pitch, valType const & yaw, valType const & roll);
//! pitch, yaw, roll
explicit tquat(tvec3<valType> const & eulerAngles);
explicit tquat(tmat3x3<valType> const & m);
explicit tquat(tmat4x4<valType> const & m);
// Accesses
valType& operator[](int i);
valType operator[](int i) const;
// Operators
tquat<valType>& operator*=(valType const & s);
tquat<valType>& operator/=(valType const & s);
};
template <typename valType>
detail::tquat<valType> operator- (
detail::tquat<valType> const & q);
template <typename valType>
detail::tvec3<valType> operator* (
detail::tquat<valType> const & q,
detail::tvec3<valType> const & v);
template <typename valType>
detail::tvec3<valType> operator* (
detail::tvec3<valType> const & v,
detail::tquat<valType> const & q);
template <typename valType>
detail::tvec4<valType> operator* (
detail::tquat<valType> const & q,
detail::tvec4<valType> const & v);
template <typename valType>
detail::tvec4<valType> operator* (
detail::tvec4<valType> const & v,
detail::tquat<valType> const & q);
template <typename valType>
detail::tquat<valType> operator* (
detail::tquat<valType> const & q,
valType const & s);
template <typename valType>
detail::tquat<valType> operator* (
valType const & s,
detail::tquat<valType> const & q);
template <typename valType>
detail::tquat<valType> operator/ (
detail::tquat<valType> const & q,
valType const & s);
} //namespace detail
namespace gtc{
//! GLM_GTC_quaternion extension: Quaternion types and functions
namespace quaternion
{
//! Returns the length of the quaternion x.
//! From GLM_GTC_quaternion extension.
template <typename valType>
valType length(
detail::tquat<valType> const & q);
//! Returns the normalized quaternion of from x.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> normalize(
detail::tquat<valType> const & q);
//! Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
//! From GLM_GTC_quaternion extension.
template <typename valType>
valType dot(
detail::tquat<valType> const & q1,
detail::tquat<valType> const & q2);
//! Returns the cross product of q1 and q2.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> cross(
detail::tquat<valType> const & q1,
detail::tquat<valType> const & q2);
//! Returns a LERP interpolated quaternion of x and y according a.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> mix(
detail::tquat<valType> const & x,
detail::tquat<valType> const & y,
valType const & a);
//! Returns the q conjugate.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> conjugate(
detail::tquat<valType> const & q);
//! Returns the q inverse.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> inverse(
detail::tquat<valType> const & q);
//! Rotates a quaternion from an vector of 3 components axis and an angle expressed in degrees.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> rotate(
detail::tquat<valType> const & q,
valType const & angle,
detail::tvec3<valType> const & v);
//! Converts a quaternion to a 3 * 3 matrix.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tmat3x3<valType> mat3_cast(
detail::tquat<valType> const & x);
//! Converts a quaternion to a 4 * 4 matrix.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tmat4x4<valType> mat4_cast(
detail::tquat<valType> const & x);
//! Converts a 3 * 3 matrix to a quaternion.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> quat_cast(
detail::tmat3x3<valType> const & x);
//! Converts a 4 * 4 matrix to a quaternion.
//! From GLM_GTC_quaternion extension.
template <typename valType>
detail::tquat<valType> quat_cast(
detail::tmat4x4<valType> const & x);
//! Quaternion of floating-point numbers.
//! From GLM_GTC_quaternion extension.
typedef detail::tquat<float> quat;
}//namespace quaternion
}//namespace gtc
} //namespace glm
#define GLM_GTC_quaternion namespace gtc::quaternion
#ifndef GLM_GTC_GLOBAL
namespace glm {using GLM_GTC_quaternion;}
#endif//GLM_GTC_GLOBAL
#include "quaternion.inl"
#endif//glm_gtc_quaternion