You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
312 lines
7.9 KiB
312 lines
7.9 KiB
#include <glm/ext/matrix_relational.hpp> |
|
#include <glm/ext/matrix_transform.hpp> |
|
#include <glm/ext/scalar_constants.hpp> |
|
#include <glm/mat2x2.hpp> |
|
#include <glm/mat2x3.hpp> |
|
#include <glm/mat2x4.hpp> |
|
#include <glm/mat3x2.hpp> |
|
#include <glm/mat3x3.hpp> |
|
#include <glm/mat3x4.hpp> |
|
#include <glm/mat4x2.hpp> |
|
#include <glm/mat4x3.hpp> |
|
#include <glm/mat4x4.hpp> |
|
#include <vector> |
|
#include <ctime> |
|
#include <cstdio> |
|
|
|
using namespace glm; |
|
|
|
int test_matrixCompMult() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
mat2 m(0, 1, 2, 3); |
|
mat2 n = matrixCompMult(m, m); |
|
mat2 expected = mat2(0, 1, 4, 9); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat2x3 m(0, 1, 2, 3, 4, 5); |
|
mat2x3 n = matrixCompMult(m, m); |
|
mat2x3 expected = mat2x3(0, 1, 4, 9, 16, 25); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); |
|
mat2x4 n = matrixCompMult(m, m); |
|
mat2x4 expected = mat2x4(0, 1, 4, 9, 16, 25, 36, 49); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); |
|
mat3 n = matrixCompMult(m, m); |
|
mat3 expected = mat3(0, 1, 4, 9, 16, 25, 36, 49, 64); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat3x2 m(0, 1, 2, 3, 4, 5); |
|
mat3x2 n = matrixCompMult(m, m); |
|
mat3x2 expected = mat3x2(0, 1, 4, 9, 16, 25); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
|
mat3x4 n = matrixCompMult(m, m); |
|
mat3x4 expected = mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
|
mat4 n = matrixCompMult(m, m); |
|
mat4 expected = mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); |
|
mat4x2 n = matrixCompMult(m, m); |
|
mat4x2 expected = mat4x2(0, 1, 4, 9, 16, 25, 36, 49); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
|
mat4x3 n = matrixCompMult(m, m); |
|
mat4x3 expected = mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121); |
|
Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_outerProduct() |
|
{ |
|
{ glm::mat2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec2(1.0f)); } |
|
{ glm::mat3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec3(1.0f)); } |
|
{ glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f)); } |
|
|
|
{ glm::mat2x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec2(1.0f)); } |
|
{ glm::mat2x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec2(1.0f)); } |
|
|
|
{ glm::mat3x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec3(1.0f)); } |
|
{ glm::mat3x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec3(1.0f)); } |
|
|
|
{ glm::mat4x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec4(1.0f)); } |
|
{ glm::mat4x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec4(1.0f)); } |
|
|
|
return 0; |
|
} |
|
|
|
int test_transpose() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
mat2 const m(0, 1, 2, 3); |
|
mat2 const t = transpose(m); |
|
mat2 const expected = mat2(0, 2, 1, 3); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat2x3 m(0, 1, 2, 3, 4, 5); |
|
mat3x2 t = transpose(m); |
|
mat3x2 const expected = mat3x2(0, 3, 1, 4, 2, 5); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); |
|
mat4x2 t = transpose(m); |
|
mat4x2 const expected = mat4x2(0, 4, 1, 5, 2, 6, 3, 7); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); |
|
mat3 t = transpose(m); |
|
mat3 const expected = mat3(0, 3, 6, 1, 4, 7, 2, 5, 8); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat3x2 m(0, 1, 2, 3, 4, 5); |
|
mat2x3 t = transpose(m); |
|
mat2x3 const expected = mat2x3(0, 2, 4, 1, 3, 5); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
|
mat4x3 t = transpose(m); |
|
mat4x3 const expected = mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
|
mat4 t = transpose(m); |
|
mat4 const expected = mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); |
|
mat2x4 t = transpose(m); |
|
mat2x4 const expected = mat2x4(0, 2, 4, 6, 1, 3, 5, 7); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
|
mat3x4 t = transpose(m); |
|
mat3x4 const expected = mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11); |
|
Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_determinant() |
|
{ |
|
|
|
|
|
return 0; |
|
} |
|
|
|
int test_inverse() |
|
{ |
|
int Error = 0; |
|
|
|
{ |
|
glm::mat4x4 A4x4( |
|
glm::vec4(1, 0, 1, 0), |
|
glm::vec4(0, 1, 0, 0), |
|
glm::vec4(0, 0, 1, 0), |
|
glm::vec4(0, 0, 0, 1)); |
|
glm::mat4x4 B4x4 = inverse(A4x4); |
|
glm::mat4x4 I4x4 = A4x4 * B4x4; |
|
glm::mat4x4 Identity(1); |
|
Error += all(equal(I4x4, Identity, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::mat3x3 A3x3( |
|
glm::vec3(1, 0, 1), |
|
glm::vec3(0, 1, 0), |
|
glm::vec3(0, 0, 1)); |
|
glm::mat3x3 B3x3 = glm::inverse(A3x3); |
|
glm::mat3x3 I3x3 = A3x3 * B3x3; |
|
glm::mat3x3 Identity(1); |
|
Error += all(equal(I3x3, Identity, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::mat2x2 A2x2( |
|
glm::vec2(1, 1), |
|
glm::vec2(0, 1)); |
|
glm::mat2x2 B2x2 = glm::inverse(A2x2); |
|
glm::mat2x2 I2x2 = A2x2 * B2x2; |
|
glm::mat2x2 Identity(1); |
|
Error += all(equal(I2x2, Identity, epsilon<float>())) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_inverse_simd() |
|
{ |
|
int Error = 0; |
|
|
|
glm::mat4x4 const Identity(1); |
|
|
|
glm::mat4x4 const A4x4( |
|
glm::vec4(1, 0, 1, 0), |
|
glm::vec4(0, 1, 0, 0), |
|
glm::vec4(0, 0, 1, 0), |
|
glm::vec4(0, 0, 0, 1)); |
|
glm::mat4x4 const B4x4 = glm::inverse(A4x4); |
|
glm::mat4x4 const I4x4 = A4x4 * B4x4; |
|
|
|
Error += glm::all(glm::equal(I4x4, Identity, 0.001f)) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
template<typename VEC3, typename MAT4> |
|
int test_inverse_perf(std::size_t Count, std::size_t Instance, char const * Message) |
|
{ |
|
std::vector<MAT4> TestInputs; |
|
TestInputs.resize(Count); |
|
std::vector<MAT4> TestOutputs; |
|
TestOutputs.resize(TestInputs.size()); |
|
|
|
VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f))); |
|
|
|
for(std::size_t i = 0; i < TestInputs.size(); ++i) |
|
{ |
|
typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1); |
|
TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis); |
|
//TestInputs[i] = glm::translate(MAT4(1), Axis * f); |
|
} |
|
|
|
std::clock_t StartTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < TestInputs.size(); ++i) |
|
TestOutputs[i] = glm::inverse(TestInputs[i]); |
|
|
|
std::clock_t EndTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < TestInputs.size(); ++i) |
|
TestOutputs[i] = TestOutputs[i] * TestInputs[i]; |
|
|
|
typename MAT4::value_type Diff(0); |
|
for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry) |
|
{ |
|
MAT4 i(1.0); |
|
MAT4 m(TestOutputs[Entry]); |
|
for(glm::length_t y = 0; y < m.length(); ++y) |
|
for(glm::length_t x = 0; x < m[y].length(); ++x) |
|
Diff = glm::max(m[y][x], i[y][x]); |
|
} |
|
|
|
//glm::uint Ulp = 0; |
|
//Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp); |
|
|
|
std::printf("inverse<%s>(%f): %lu\n", Message, static_cast<double>(Diff), EndTime - StartTime); |
|
|
|
return 0; |
|
} |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
Error += test_matrixCompMult(); |
|
Error += test_outerProduct(); |
|
Error += test_transpose(); |
|
Error += test_determinant(); |
|
Error += test_inverse(); |
|
Error += test_inverse_simd(); |
|
|
|
# ifdef NDEBUG |
|
std::size_t const Samples = 1000; |
|
# else |
|
std::size_t const Samples = 1; |
|
# endif//NDEBUG |
|
|
|
for(std::size_t i = 0; i < 1; ++i) |
|
{ |
|
Error += test_inverse_perf<glm::vec3, glm::mat4>(Samples, i, "mat4"); |
|
Error += test_inverse_perf<glm::dvec3, glm::dmat4>(Samples, i, "dmat4"); |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
|