You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1353 lines
32 KiB
1353 lines
32 KiB
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// Created : 2011-05-03 |
|
// Updated : 2011-05-03 |
|
// Licence : This source is under MIT licence |
|
// File : test/core/func_integer.cpp |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include <glm/integer.hpp> |
|
#include <glm/gtc/vec1.hpp> |
|
#include <vector> |
|
#include <ctime> |
|
#include <cstdio> |
|
|
|
enum result |
|
{ |
|
SUCCESS, |
|
FAIL, |
|
ASSERT, |
|
STATIC_ASSERT |
|
}; |
|
|
|
namespace bitfieldInsert |
|
{ |
|
template <typename genType, typename sizeType> |
|
struct type |
|
{ |
|
genType Base; |
|
genType Insert; |
|
sizeType Offset; |
|
sizeType Bits; |
|
genType Return; |
|
}; |
|
|
|
typedef type<glm::uint, glm::uint> typeU32; |
|
|
|
typeU32 const Data32[] = |
|
{ |
|
{0x00000000, 0xffffffff, 0, 32, 0xffffffff}, |
|
{0x00000000, 0xffffffff, 0, 31, 0x7fffffff}, |
|
{0x00000000, 0xffffffff, 0, 0, 0x00000000}, |
|
{0xff000000, 0x0000ff00, 8, 8, 0xff00ff00}, |
|
{0xffff0000, 0x0000ffff, 16, 16, 0x00000000}, |
|
{0x0000ffff, 0xffff0000, 16, 16, 0xffffffff} |
|
}; |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
glm::uint count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(glm::uint i = 0; i < count; ++i) |
|
{ |
|
glm::uint Return = glm::bitfieldInsert( |
|
Data32[i].Base, |
|
Data32[i].Insert, |
|
Data32[i].Offset, |
|
Data32[i].Bits); |
|
|
|
Error += Data32[i].Return == Return ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//bitfieldInsert |
|
|
|
namespace bitfieldExtract |
|
{ |
|
template <typename genType, typename sizeType> |
|
struct type |
|
{ |
|
genType Value; |
|
sizeType Offset; |
|
sizeType Bits; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
typedef type<glm::uint, glm::uint> typeU32; |
|
|
|
typeU32 const Data32[] = |
|
{ |
|
{0xffffffff, 0,32, 0xffffffff, SUCCESS}, |
|
{0xffffffff, 8, 0, 0x00000000, SUCCESS}, |
|
{0x00000000, 0,32, 0x00000000, SUCCESS}, |
|
{0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS}, |
|
{0x00000000, 8, 0, 0x00000000, SUCCESS}, |
|
{0x80000000,31, 1, 0x00000001, SUCCESS}, |
|
{0x7fffffff,31, 1, 0x00000000, SUCCESS}, |
|
{0x00000300, 8, 8, 0x00000003, SUCCESS}, |
|
{0x0000ff00, 8, 8, 0x000000ff, SUCCESS}, |
|
{0xfffffff0, 0, 5, 0x00000010, SUCCESS}, |
|
{0x000000ff, 1, 3, 0x00000007, SUCCESS}, |
|
{0x000000ff, 0, 3, 0x00000007, SUCCESS}, |
|
{0x00000000, 0, 2, 0x00000000, SUCCESS}, |
|
{0xffffffff, 0, 8, 0x000000ff, SUCCESS}, |
|
{0xffff0000,16,16, 0x0000ffff, SUCCESS}, |
|
{0xfffffff0, 0, 8, 0x00000000, FAIL}, |
|
{0xffffffff,16,16, 0x00000000, FAIL}, |
|
//{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert |
|
//{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert |
|
//{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert |
|
}; |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(glm::uint i = 0; i < count; ++i) |
|
{ |
|
glm::uint Return = glm::bitfieldExtract( |
|
Data32[i].Value, |
|
Data32[i].Offset, |
|
Data32[i].Bits); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS && Compare) |
|
continue; |
|
else if(Data32[i].Result == FAIL && !Compare) |
|
continue; |
|
|
|
Error += 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//extractField |
|
|
|
namespace bitfieldReverse |
|
{ |
|
/* |
|
GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v) |
|
{ |
|
unsigned int Result(0); |
|
unsigned int const BitSize = static_cast<unsigned int>(sizeof(unsigned int) * 8); |
|
for(unsigned int i = 0; i < BitSize; ++i) |
|
{ |
|
unsigned int const BitSet(v & (static_cast<unsigned int>(1) << i)); |
|
unsigned int const BitFirst(BitSet >> i); |
|
Result |= BitFirst << (BitSize - 1 - i); |
|
} |
|
return Result; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v) |
|
{ |
|
glm::uint64_t Result(0); |
|
glm::uint64_t const BitSize = static_cast<glm::uint64_t>(sizeof(unsigned int) * 8); |
|
for(glm::uint64_t i = 0; i < BitSize; ++i) |
|
{ |
|
glm::uint64_t const BitSet(v & (static_cast<glm::uint64_t>(1) << i)); |
|
glm::uint64_t const BitFirst(BitSet >> i); |
|
Result |= BitFirst << (BitSize - 1 - i); |
|
} |
|
return Result; |
|
} |
|
*/ |
|
template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverseLoop(vecType<T, P> const & v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values"); |
|
|
|
vecType<T, P> Result(0); |
|
T const BitSize = static_cast<T>(sizeof(T) * 8); |
|
for(T i = 0; i < BitSize; ++i) |
|
{ |
|
vecType<T, P> const BitSet(v & (static_cast<T>(1) << i)); |
|
vecType<T, P> const BitFirst(BitSet >> i); |
|
Result |= BitFirst << (BitSize - 1 - i); |
|
} |
|
return Result; |
|
} |
|
|
|
template <typename T> |
|
GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v) |
|
{ |
|
return bitfieldReverseLoop(glm::tvec1<T>(v)).x; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER glm::uint32_t bitfieldReverseUint32(glm::uint32_t x) |
|
{ |
|
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1; |
|
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2; |
|
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4; |
|
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8; |
|
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16; |
|
return x; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseUint64(glm::uint64_t x) |
|
{ |
|
x = (x & 0x5555555555555555) << 1 | (x & 0xAAAAAAAAAAAAAAAA) >> 1; |
|
x = (x & 0x3333333333333333) << 2 | (x & 0xCCCCCCCCCCCCCCCC) >> 2; |
|
x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x & 0xF0F0F0F0F0F0F0F0) >> 4; |
|
x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8; |
|
x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16; |
|
x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32; |
|
return x; |
|
} |
|
|
|
template <bool EXEC = false> |
|
struct compute_bitfieldReverseStep |
|
{ |
|
template <typename T, glm::precision P, template <class, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T) |
|
{ |
|
return v; |
|
} |
|
}; |
|
|
|
template <> |
|
struct compute_bitfieldReverseStep<true> |
|
{ |
|
template <typename T, glm::precision P, template <class, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift) |
|
{ |
|
return (v & Mask) << Shift | (v & (~Mask)) >> Shift; |
|
} |
|
}; |
|
|
|
template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverseOps(vecType<T, P> const & v) |
|
{ |
|
vecType<T, P> x(v); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 2>::call(x, T(0x5555555555555555ull), static_cast<T>( 1)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 4>::call(x, T(0x3333333333333333ull), static_cast<T>( 2)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 8>::call(x, T(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call(x, T(0x00FF00FF00FF00FFull), static_cast<T>( 8)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call(x, T(0x0000FFFF0000FFFFull), static_cast<T>(16)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call(x, T(0x00000000FFFFFFFFull), static_cast<T>(32)); |
|
return x; |
|
} |
|
|
|
template <typename genType> |
|
GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x) |
|
{ |
|
return bitfieldReverseOps(glm::tvec1<genType, glm::defaultp>(x)).x; |
|
} |
|
|
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
typedef type<glm::uint> typeU32; |
|
|
|
typeU32 const Data32[] = |
|
{ |
|
{0x00000001, 0x80000000, SUCCESS}, |
|
{0x0000000f, 0xf0000000, SUCCESS}, |
|
{0x000000ff, 0xff000000, SUCCESS}, |
|
{0xf0000000, 0x0000000f, SUCCESS}, |
|
{0xff000000, 0x000000ff, SUCCESS}, |
|
{0xffffffff, 0xffffffff, SUCCESS}, |
|
{0x00000000, 0x00000000, SUCCESS} |
|
}; |
|
|
|
typedef type<glm::uint64> typeU64; |
|
|
|
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) |
|
typeU64 const Data64[] = |
|
{ |
|
{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS}, |
|
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS}, |
|
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS} |
|
}; |
|
#else |
|
typeU64 const Data64[] = |
|
{ |
|
{0x00000000000000ff, 0xff00000000000000, SUCCESS}, |
|
{0x000000000000000f, 0xf000000000000000, SUCCESS}, |
|
{0xf000000000000000, 0x000000000000000f, SUCCESS}, |
|
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, |
|
{0x0000000000000000, 0x0000000000000000, SUCCESS} |
|
}; |
|
#endif |
|
|
|
int test32_bitfieldReverse() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = glm::bitfieldReverse(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test32_bitfieldReverseLoop() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = bitfieldReverseLoop(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test32_bitfieldReverseUint32() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = bitfieldReverseUint32(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test32_bitfieldReverseOps() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = bitfieldReverseOps(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test64_bitfieldReverse() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test64_bitfieldReverseLoop() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test64_bitfieldReverseUint64() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test64_bitfieldReverseOps() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = bitfieldReverseOps(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test32_bitfieldReverse(); |
|
Error += test32_bitfieldReverseLoop(); |
|
Error += test32_bitfieldReverseUint32(); |
|
Error += test32_bitfieldReverseOps(); |
|
|
|
Error += test64_bitfieldReverse(); |
|
Error += test64_bitfieldReverseLoop(); |
|
Error += test64_bitfieldReverseUint64(); |
|
Error += test64_bitfieldReverseOps(); |
|
|
|
return Error; |
|
} |
|
|
|
int perf32() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint32 Count = 10000000; |
|
std::vector<glm::uint32> Data; |
|
Data.resize(static_cast<std::size_t>(Count)); |
|
|
|
std::clock_t Timestamps0 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = glm::bitfieldReverse(k); |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseLoop(k); |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseUint32(k); |
|
|
|
std::clock_t Timestamps3 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseOps(k); |
|
|
|
std::clock_t Timestamps4 = std::clock(); |
|
|
|
std::printf("glm::bitfieldReverse: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0)); |
|
std::printf("bitfieldReverseLoop: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1)); |
|
std::printf("bitfieldReverseUint32: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2)); |
|
std::printf("bitfieldReverseOps: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3)); |
|
|
|
return Error; |
|
} |
|
|
|
int perf64() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint64 Count = 10000000; |
|
std::vector<glm::uint64> Data; |
|
Data.resize(static_cast<std::size_t>(Count)); |
|
|
|
std::clock_t Timestamps0 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = glm::bitfieldReverse(k); |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseLoop(k); |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseUint64(k); |
|
|
|
std::clock_t Timestamps3 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseOps(k); |
|
|
|
std::clock_t Timestamps4 = std::clock(); |
|
|
|
std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0)); |
|
std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1)); |
|
std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2)); |
|
std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3)); |
|
|
|
return Error; |
|
} |
|
|
|
int perf() |
|
{ |
|
int Error = 0; |
|
|
|
Error += perf32(); |
|
Error += perf64(); |
|
|
|
return Error; |
|
} |
|
}//bitfieldReverse |
|
|
|
namespace findMSB |
|
{ |
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
template <typename genIUType> |
|
GLM_FUNC_QUALIFIER int findMSB_095(genIUType Value) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); |
|
|
|
if(Value == genIUType(0) || Value == genIUType(-1)) |
|
return -1; |
|
else if(Value > 0) |
|
{ |
|
genIUType Bit = genIUType(-1); |
|
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} |
|
return Bit; |
|
} |
|
else //if(Value < 0) |
|
{ |
|
int const BitCount(sizeof(genIUType) * 8); |
|
int MostSignificantBit(-1); |
|
for(int BitIndex(0); BitIndex < BitCount; ++BitIndex) |
|
MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex; |
|
assert(MostSignificantBit >= 0); |
|
return MostSignificantBit; |
|
} |
|
} |
|
|
|
template <typename genIUType> |
|
GLM_FUNC_QUALIFIER int findMSB_nlz1(genIUType x) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); |
|
/* |
|
int Result = 0; |
|
for(std::size_t i = 0, n = sizeof(genIUType) * 8; i < n; ++i) |
|
Result = Value & static_cast<genIUType>(1 << i) ? static_cast<int>(i) : Result; |
|
return Result; |
|
*/ |
|
/* |
|
genIUType Bit = genIUType(-1); |
|
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} |
|
return Bit; |
|
*/ |
|
int n; |
|
|
|
if (x == 0) return(32); |
|
n = 0; |
|
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;} |
|
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;} |
|
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;} |
|
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;} |
|
if (x <= 0x7FFFFFFF) {n = n + 1;} |
|
return n; |
|
} |
|
|
|
int findMSB_nlz2(unsigned int x) |
|
{ |
|
unsigned y; |
|
int n; |
|
|
|
n = 32; |
|
y = x >>16; if (y != 0) {n = n -16; x = y;} |
|
y = x >> 8; if (y != 0) {n = n - 8; x = y;} |
|
y = x >> 4; if (y != 0) {n = n - 4; x = y;} |
|
y = x >> 2; if (y != 0) {n = n - 2; x = y;} |
|
y = x >> 1; if (y != 0) return n - 2; |
|
return n - x; |
|
} |
|
|
|
int perf_950() |
|
{ |
|
type<glm::uint> const Data[] = |
|
{ |
|
//{0x00000000, -1}, |
|
{0x00000001, 0}, |
|
{0x00000002, 1}, |
|
{0x00000003, 1}, |
|
{0x00000004, 2}, |
|
{0x00000005, 2}, |
|
{0x00000007, 2}, |
|
{0x00000008, 3}, |
|
{0x00000010, 4}, |
|
{0x00000020, 5}, |
|
{0x00000040, 6}, |
|
{0x00000080, 7}, |
|
{0x00000100, 8}, |
|
{0x00000200, 9}, |
|
{0x00000400, 10}, |
|
{0x00000800, 11}, |
|
{0x00001000, 12}, |
|
{0x00002000, 13}, |
|
{0x00004000, 14}, |
|
{0x00008000, 15}, |
|
{0x00010000, 16}, |
|
{0x00020000, 17}, |
|
{0x00040000, 18}, |
|
{0x00080000, 19}, |
|
{0x00100000, 20}, |
|
{0x00200000, 21}, |
|
{0x00400000, 22}, |
|
{0x00800000, 23}, |
|
{0x01000000, 24}, |
|
{0x02000000, 25}, |
|
{0x04000000, 26}, |
|
{0x08000000, 27}, |
|
{0x10000000, 28}, |
|
{0x20000000, 29}, |
|
{0x40000000, 30} |
|
}; |
|
|
|
int Error(0); |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < 1000000; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = findMSB_095(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1)); |
|
|
|
return Error; |
|
} |
|
|
|
int perf_ops() |
|
{ |
|
type<int> const Data[] = |
|
{ |
|
{0x00000000, -1}, |
|
{0x00000001, 0}, |
|
{0x00000002, 1}, |
|
{0x00000003, 1}, |
|
{0x00000004, 2}, |
|
{0x00000005, 2}, |
|
{0x00000007, 2}, |
|
{0x00000008, 3}, |
|
{0x00000010, 4}, |
|
{0x00000020, 5}, |
|
{0x00000040, 6}, |
|
{0x00000080, 7}, |
|
{0x00000100, 8}, |
|
{0x00000200, 9}, |
|
{0x00000400, 10}, |
|
{0x00000800, 11}, |
|
{0x00001000, 12}, |
|
{0x00002000, 13}, |
|
{0x00004000, 14}, |
|
{0x00008000, 15}, |
|
{0x00010000, 16}, |
|
{0x00020000, 17}, |
|
{0x00040000, 18}, |
|
{0x00080000, 19}, |
|
{0x00100000, 20}, |
|
{0x00200000, 21}, |
|
{0x00400000, 22}, |
|
{0x00800000, 23}, |
|
{0x01000000, 24}, |
|
{0x02000000, 25}, |
|
{0x04000000, 26}, |
|
{0x08000000, 27}, |
|
{0x10000000, 28}, |
|
{0x20000000, 29}, |
|
{0x40000000, 30} |
|
}; |
|
|
|
int Error(0); |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < 1000000; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = findMSB_nlz1(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
std::printf("findMSB - nlz1: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1)); |
|
|
|
return Error; |
|
} |
|
|
|
|
|
int test_findMSB() |
|
{ |
|
type<glm::uint> const Data[] = |
|
{ |
|
//{0x00000000, -1}, |
|
{0x00000001, 0}, |
|
{0x00000002, 1}, |
|
{0x00000003, 1}, |
|
{0x00000004, 2}, |
|
{0x00000005, 2}, |
|
{0x00000007, 2}, |
|
{0x00000008, 3}, |
|
{0x00000010, 4}, |
|
{0x00000020, 5}, |
|
{0x00000040, 6}, |
|
{0x00000080, 7}, |
|
{0x00000100, 8}, |
|
{0x00000200, 9}, |
|
{0x00000400, 10}, |
|
{0x00000800, 11}, |
|
{0x00001000, 12}, |
|
{0x00002000, 13}, |
|
{0x00004000, 14}, |
|
{0x00008000, 15}, |
|
{0x00010000, 16}, |
|
{0x00020000, 17}, |
|
{0x00040000, 18}, |
|
{0x00080000, 19}, |
|
{0x00100000, 20}, |
|
{0x00200000, 21}, |
|
{0x00400000, 22}, |
|
{0x00800000, 23}, |
|
{0x01000000, 24}, |
|
{0x02000000, 25}, |
|
{0x04000000, 26}, |
|
{0x08000000, 27}, |
|
{0x10000000, 28}, |
|
{0x20000000, 29}, |
|
{0x40000000, 30} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = glm::findMSB(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_nlz1() |
|
{ |
|
type<glm::uint> const Data[] = |
|
{ |
|
//{0x00000000, -1}, |
|
{0x00000001, 0}, |
|
{0x00000002, 1}, |
|
{0x00000003, 1}, |
|
{0x00000004, 2}, |
|
{0x00000005, 2}, |
|
{0x00000007, 2}, |
|
{0x00000008, 3}, |
|
{0x00000010, 4}, |
|
{0x00000020, 5}, |
|
{0x00000040, 6}, |
|
{0x00000080, 7}, |
|
{0x00000100, 8}, |
|
{0x00000200, 9}, |
|
{0x00000400, 10}, |
|
{0x00000800, 11}, |
|
{0x00001000, 12}, |
|
{0x00002000, 13}, |
|
{0x00004000, 14}, |
|
{0x00008000, 15}, |
|
{0x00010000, 16}, |
|
{0x00020000, 17}, |
|
{0x00040000, 18}, |
|
{0x00080000, 19}, |
|
{0x00100000, 20}, |
|
{0x00200000, 21}, |
|
{0x00400000, 22}, |
|
{0x00800000, 23}, |
|
{0x01000000, 24}, |
|
{0x02000000, 25}, |
|
{0x04000000, 26}, |
|
{0x08000000, 27}, |
|
{0x10000000, 28}, |
|
{0x20000000, 29}, |
|
{0x40000000, 30} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = findMSB_nlz2(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_findMSB(); |
|
//Error += test_nlz1(); |
|
|
|
return Error; |
|
} |
|
|
|
int perf() |
|
{ |
|
int Error(0); |
|
|
|
Error += perf_950(); |
|
//Error += perf_ops(); |
|
|
|
return Error; |
|
} |
|
}//findMSB |
|
|
|
namespace findLSB |
|
{ |
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
type<int> const DataI32[] = |
|
{ |
|
{0x00000001, 0}, |
|
{0x00000003, 0}, |
|
{0x00000002, 1} |
|
}; |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = glm::findLSB(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
}//findLSB |
|
|
|
namespace uaddCarry |
|
{ |
|
void test_instance(unsigned int n) |
|
{ |
|
glm::uint a = std::numeric_limits<glm::uint>::max() - 4, |
|
b = n, |
|
carry = 0; |
|
glm::uint result = glm::uaddCarry(a, b, carry); |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::uint x = 16; |
|
glm::uint y = 17; |
|
glm::uint Carry = 0; |
|
glm::uint Result = glm::uaddCarry(x, y, Carry); |
|
|
|
Error += Carry == 1 ? 0 : 1; |
|
Error += Result == 33 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(16); |
|
glm::uvec1 y(17); |
|
glm::uvec1 Carry(0); |
|
glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); |
|
|
|
Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec1(33))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec2 x(16); |
|
glm::uvec2 y(17); |
|
glm::uvec2 Carry(0); |
|
glm::uvec2 Result(glm::uaddCarry(x, y, Carry)); |
|
|
|
Error += glm::all(glm::equal(Carry, glm::uvec2(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec2(33))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec3 x(16); |
|
glm::uvec3 y(17); |
|
glm::uvec3 Carry(0); |
|
glm::uvec3 Result(glm::uaddCarry(x, y, Carry)); |
|
|
|
Error += glm::all(glm::equal(Carry, glm::uvec3(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec3(33))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec4 x(16); |
|
glm::uvec4 y(17); |
|
glm::uvec4 Carry(0); |
|
glm::uvec4 Result(glm::uaddCarry(x, y, Carry)); |
|
|
|
Error += glm::all(glm::equal(Carry, glm::uvec4(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec4(33))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
for(unsigned int i = 0; i < 10; ++i) |
|
test_instance(i); |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace uaddCarry |
|
|
|
namespace usubBorrow |
|
{ |
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::uint x = 16; |
|
glm::uint y = 17; |
|
glm::uint Borrow = 0; |
|
glm::uint Result = glm::usubBorrow(x, y, Borrow); |
|
|
|
Error += Borrow == 1 ? 0 : 1; |
|
Error += Result == 1 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(16); |
|
glm::uvec1 y(17); |
|
glm::uvec1 Borrow(0); |
|
glm::uvec1 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec2 x(16); |
|
glm::uvec2 y(17); |
|
glm::uvec2 Borrow(0); |
|
glm::uvec2 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec3 x(16); |
|
glm::uvec3 y(17); |
|
glm::uvec3 Borrow(0); |
|
glm::uvec3 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec4 x(16); |
|
glm::uvec4 y(17); |
|
glm::uvec4 Borrow(0); |
|
glm::uvec4 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace usubBorrow |
|
|
|
namespace umulExtended |
|
{ |
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::uint x = 2; |
|
glm::uint y = 3; |
|
glm::uint msb = 0; |
|
glm::uint lsb = 0; |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += msb == 0 ? 0 : 1; |
|
Error += lsb == 6 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(2); |
|
glm::uvec1 y(3); |
|
glm::uvec1 msb(0); |
|
glm::uvec1 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec2 x(2); |
|
glm::uvec2 y(3); |
|
glm::uvec2 msb(0); |
|
glm::uvec2 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec3 x(2); |
|
glm::uvec3 y(3); |
|
glm::uvec3 msb(0); |
|
glm::uvec3 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec4 x(2); |
|
glm::uvec4 y(3); |
|
glm::uvec4 msb(0); |
|
glm::uvec4 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace umulExtended |
|
|
|
namespace imulExtended |
|
{ |
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
int x = 2; |
|
int y = 3; |
|
int msb = 0; |
|
int lsb = 0; |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += msb == 0 ? 0 : 1; |
|
Error += lsb == 6 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec1 x(2); |
|
glm::ivec1 y(3); |
|
glm::ivec1 msb(0); |
|
glm::ivec1 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec2 x(2); |
|
glm::ivec2 y(3); |
|
glm::ivec2 msb(0); |
|
glm::ivec2 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec3 x(2); |
|
glm::ivec3 y(3); |
|
glm::ivec3 msb(0); |
|
glm::ivec3 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec4 x(2); |
|
glm::ivec4 y(3); |
|
glm::ivec4 msb(0); |
|
glm::ivec4 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace imulExtended |
|
|
|
namespace bitCount |
|
{ |
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
type<int> const DataI32[] = |
|
{ |
|
{0x00000001, 1}, |
|
{0x00000003, 2}, |
|
{0x00000002, 1}, |
|
{0x7fffffff, 31}, |
|
{0x00000000, 0} |
|
}; |
|
|
|
template <typename T> |
|
inline int bitCount_if(T v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); |
|
|
|
int Count(0); |
|
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) |
|
{ |
|
if(v & static_cast<T>(1 << i)) |
|
++Count; |
|
} |
|
return Count; |
|
} |
|
|
|
template <typename T> |
|
inline int bitCount_vec(T v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); |
|
|
|
int Count(0); |
|
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) |
|
{ |
|
Count += static_cast<int>((v >> i) & static_cast<T>(1)); |
|
} |
|
return Count; |
|
} |
|
|
|
template <bool EXEC = false> |
|
struct compute_bitfieldBitCountStep |
|
{ |
|
template <typename T, glm::precision P, template <class, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T) |
|
{ |
|
return v; |
|
} |
|
}; |
|
|
|
template <> |
|
struct compute_bitfieldBitCountStep<true> |
|
{ |
|
template <typename T, glm::precision P, template <class, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift) |
|
{ |
|
return (v & Mask) + ((v >> Shift) & Mask); |
|
} |
|
}; |
|
|
|
template <typename T, glm::precision P, template <typename, glm::precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<int, P> bitCount_bitfield(vecType<T, P> const & v) |
|
{ |
|
vecType<typename glm::detail::make_unsigned<T>::type, P> x(*reinterpret_cast<vecType<typename glm::detail::make_unsigned<T>::type, P> const *>(&v)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 2>::call(x, typename glm::detail::make_unsigned<T>::type(0x5555555555555555ull), typename glm::detail::make_unsigned<T>::type( 1)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 4>::call(x, typename glm::detail::make_unsigned<T>::type(0x3333333333333333ull), typename glm::detail::make_unsigned<T>::type( 2)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 8>::call(x, typename glm::detail::make_unsigned<T>::type(0x0F0F0F0F0F0F0F0Full), typename glm::detail::make_unsigned<T>::type( 4)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 16>::call(x, typename glm::detail::make_unsigned<T>::type(0x00FF00FF00FF00FFull), typename glm::detail::make_unsigned<T>::type( 8)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 32>::call(x, typename glm::detail::make_unsigned<T>::type(0x0000FFFF0000FFFFull), typename glm::detail::make_unsigned<T>::type(16)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 64>::call(x, typename glm::detail::make_unsigned<T>::type(0x00000000FFFFFFFFull), typename glm::detail::make_unsigned<T>::type(32)); |
|
return vecType<int, P>(x); |
|
} |
|
|
|
template <typename genType> |
|
GLM_FUNC_QUALIFIER int bitCount_bitfield(genType x) |
|
{ |
|
return bitCount_bitfield(glm::tvec1<genType, glm::defaultp>(x)).x; |
|
} |
|
|
|
int perf() |
|
{ |
|
int Error(0); |
|
|
|
std::size_t Size = 10000000; |
|
std::vector<int> v; |
|
v.resize(Size); |
|
|
|
std::vector<glm::ivec4> w; |
|
w.resize(Size); |
|
|
|
|
|
std::clock_t TimestampsA = std::clock(); |
|
|
|
// bitCount - TimeIf |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = bitCount_if(i); |
|
} |
|
|
|
std::clock_t TimestampsB = std::clock(); |
|
|
|
// bitCount - TimeVec |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = bitCount_vec(i); |
|
} |
|
|
|
std::clock_t TimestampsC = std::clock(); |
|
|
|
// bitCount - TimeDefault |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = glm::bitCount(i); |
|
} |
|
|
|
std::clock_t TimestampsD = std::clock(); |
|
|
|
// bitCount - TimeVec4 |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
w[i] = glm::bitCount(glm::ivec4(static_cast<int>(i))); |
|
} |
|
|
|
std::clock_t TimestampsE = std::clock(); |
|
|
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = bitCount_bitfield(static_cast<int>(i)); |
|
} |
|
|
|
std::clock_t TimestampsF = std::clock(); |
|
|
|
std::printf("bitCount - TimeIf %d\n", static_cast<unsigned int>(TimestampsB - TimestampsA)); |
|
std::printf("bitCount - TimeVec %d\n", static_cast<unsigned int>(TimestampsC - TimestampsB)); |
|
std::printf("bitCount - TimeDefault %d\n", static_cast<unsigned int>(TimestampsD - TimestampsC)); |
|
std::printf("bitCount - TimeVec4 %d\n", static_cast<unsigned int>(TimestampsE - TimestampsD)); |
|
std::printf("bitCount - bitfield %d\n", static_cast<unsigned int>(TimestampsF - TimestampsE)); |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
int ResultA = glm::bitCount(DataI32[i].Value); |
|
int ResultB = bitCount_if(DataI32[i].Value); |
|
int ResultC = bitCount_vec(DataI32[i].Value); |
|
int ResultE = bitCount_bitfield(DataI32[i].Value); |
|
|
|
Error += DataI32[i].Return == ResultA ? 0 : 1; |
|
Error += DataI32[i].Return == ResultB ? 0 : 1; |
|
Error += DataI32[i].Return == ResultC ? 0 : 1; |
|
Error += DataI32[i].Return == ResultE ? 0 : 1; |
|
|
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
}//bitCount |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
|
|
Error += ::bitCount::test(); |
|
Error += ::bitfieldReverse::test(); |
|
Error += ::findMSB::test(); |
|
Error += ::findLSB::test(); |
|
Error += ::umulExtended::test(); |
|
Error += ::imulExtended::test(); |
|
Error += ::uaddCarry::test(); |
|
Error += ::usubBorrow::test(); |
|
Error += ::bitfieldInsert::test(); |
|
Error += ::bitfieldExtract::test(); |
|
|
|
# ifdef GLM_TEST_ENABLE_PERF |
|
Error += ::bitCount::perf(); |
|
Error += ::bitfieldReverse::perf(); |
|
Error += ::findMSB::perf(); |
|
# endif |
|
|
|
return Error; |
|
}
|
|
|