You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							686 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
	
	
							686 lines
						
					
					
						
							15 KiB
						
					
					
				| #include <glm/ext/scalar_integer.hpp> | |
| #include <glm/ext/scalar_int_sized.hpp> | |
| #include <glm/ext/scalar_uint_sized.hpp> | |
| #include <vector> | |
| #include <ctime> | |
| #include <cstdio> | |
|  | |
| #if GLM_LANG & GLM_LANG_CXX11_FLAG | |
| #include <chrono> | |
|  | |
| namespace isPowerOfTwo | |
| { | |
| 	template<typename genType> | |
| 	struct type | |
| 	{ | |
| 		genType		Value; | |
| 		bool		Return; | |
| 	}; | |
| 
 | |
| 	int test_int16() | |
| 	{ | |
| 		type<glm::int16> const Data[] = | |
| 		{ | |
| 			{0x0001, true}, | |
| 			{0x0002, true}, | |
| 			{0x0004, true}, | |
| 			{0x0080, true}, | |
| 			{0x0000, true}, | |
| 			{0x0003, false} | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) | |
| 		{ | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test_uint16() | |
| 	{ | |
| 		type<glm::uint16> const Data[] = | |
| 		{ | |
| 			{0x0001, true}, | |
| 			{0x0002, true}, | |
| 			{0x0004, true}, | |
| 			{0x0000, true}, | |
| 			{0x0000, true}, | |
| 			{0x0003, false} | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) | |
| 		{ | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test_int32() | |
| 	{ | |
| 		type<int> const Data[] = | |
| 		{ | |
| 			{0x00000001, true}, | |
| 			{0x00000002, true}, | |
| 			{0x00000004, true}, | |
| 			{0x0000000f, false}, | |
| 			{0x00000000, true}, | |
| 			{0x00000003, false} | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
| 		{ | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test_uint32() | |
| 	{ | |
| 		type<glm::uint> const Data[] = | |
| 		{ | |
| 			{0x00000001, true}, | |
| 			{0x00000002, true}, | |
| 			{0x00000004, true}, | |
| 			{0x80000000, true}, | |
| 			{0x00000000, true}, | |
| 			{0x00000003, false} | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) | |
| 		{ | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		Error += test_int16(); | |
| 		Error += test_uint16(); | |
| 		Error += test_int32(); | |
| 		Error += test_uint32(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//isPowerOfTwo | |
|  | |
| namespace nextPowerOfTwo_advanced | |
| { | |
| 	template<typename genIUType> | |
| 	GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) | |
| 	{ | |
| 		genIUType tmp = Value; | |
| 		genIUType result = genIUType(0); | |
| 		while(tmp) | |
| 		{ | |
| 			result = (tmp & (~tmp + 1)); // grab lowest bit | |
| 			tmp &= ~result; // clear lowest bit | |
| 		} | |
| 		return result; | |
| 	} | |
| 
 | |
| 	template<typename genType> | |
| 	GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) | |
| 	{ | |
| 		return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; | |
| 	} | |
| 
 | |
| 	template<typename genType> | |
| 	struct type | |
| 	{ | |
| 		genType		Value; | |
| 		genType		Return; | |
| 	}; | |
| 
 | |
| 	int test_int32() | |
| 	{ | |
| 		type<glm::int32> const Data[] = | |
| 		{ | |
| 			{0x0000ffff, 0x00010000}, | |
| 			{-3, -4}, | |
| 			{-8, -8}, | |
| 			{0x00000001, 0x00000001}, | |
| 			{0x00000002, 0x00000002}, | |
| 			{0x00000004, 0x00000004}, | |
| 			{0x00000007, 0x00000008}, | |
| 			{0x0000fff0, 0x00010000}, | |
| 			{0x0000f000, 0x00010000}, | |
| 			{0x08000000, 0x08000000}, | |
| 			{0x00000000, 0x00000000}, | |
| 			{0x00000003, 0x00000004} | |
| 		}; | |
| 
 | |
| 		int Error(0); | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) | |
| 		{ | |
| 			glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test_uint32() | |
| 	{ | |
| 		type<glm::uint32> const Data[] = | |
| 		{ | |
| 			{0x00000001, 0x00000001}, | |
| 			{0x00000002, 0x00000002}, | |
| 			{0x00000004, 0x00000004}, | |
| 			{0x00000007, 0x00000008}, | |
| 			{0x0000ffff, 0x00010000}, | |
| 			{0x0000fff0, 0x00010000}, | |
| 			{0x0000f000, 0x00010000}, | |
| 			{0x80000000, 0x80000000}, | |
| 			{0x00000000, 0x00000000}, | |
| 			{0x00000003, 0x00000004} | |
| 		}; | |
| 
 | |
| 		int Error(0); | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) | |
| 		{ | |
| 			glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int perf() | |
| 	{ | |
| 		int Error(0); | |
| 
 | |
| 		std::vector<glm::uint> v; | |
| 		v.resize(100000000); | |
| 
 | |
| 		std::clock_t Timestramp0 = std::clock(); | |
| 
 | |
| 		for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | |
| 			v[i] = nextPowerOfTwo_loop(i); | |
| 
 | |
| 		std::clock_t Timestramp1 = std::clock(); | |
| 
 | |
| 		for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | |
| 			v[i] = glm::nextPowerOfTwo(i); | |
| 
 | |
| 		std::clock_t Timestramp2 = std::clock(); | |
| 
 | |
| 		std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); | |
| 		std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error(0); | |
| 
 | |
| 		Error += test_int32(); | |
| 		Error += test_uint32(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace nextPowerOfTwo_advanced | |
|  | |
| namespace prevPowerOfTwo | |
| { | |
| 	template <typename T> | |
| 	int run() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		T const A = glm::prevPowerOfTwo(static_cast<T>(7)); | |
| 		Error += A == static_cast<T>(4) ? 0 : 1; | |
| 
 | |
| 		T const B = glm::prevPowerOfTwo(static_cast<T>(15)); | |
| 		Error += B == static_cast<T>(8) ? 0 : 1; | |
| 
 | |
| 		T const C = glm::prevPowerOfTwo(static_cast<T>(31)); | |
| 		Error += C == static_cast<T>(16) ? 0 : 1; | |
| 
 | |
| 		T const D = glm::prevPowerOfTwo(static_cast<T>(32)); | |
| 		Error += D == static_cast<T>(32) ? 0 : 1; | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		Error += run<glm::int8>(); | |
| 		Error += run<glm::int16>(); | |
| 		Error += run<glm::int32>(); | |
| 		Error += run<glm::int64>(); | |
| 
 | |
| 		Error += run<glm::uint8>(); | |
| 		Error += run<glm::uint16>(); | |
| 		Error += run<glm::uint32>(); | |
| 		Error += run<glm::uint64>(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace prevPowerOfTwo | |
|  | |
| namespace nextPowerOfTwo | |
| { | |
| 	template <typename T> | |
| 	int run() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		T const A = glm::nextPowerOfTwo(static_cast<T>(7)); | |
| 		Error += A == static_cast<T>(8) ? 0 : 1; | |
| 
 | |
| 		T const B = glm::nextPowerOfTwo(static_cast<T>(15)); | |
| 		Error += B == static_cast<T>(16) ? 0 : 1; | |
| 
 | |
| 		T const C = glm::nextPowerOfTwo(static_cast<T>(31)); | |
| 		Error += C == static_cast<T>(32) ? 0 : 1; | |
| 
 | |
| 		T const D = glm::nextPowerOfTwo(static_cast<T>(32)); | |
| 		Error += D == static_cast<T>(32) ? 0 : 1; | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		Error += run<glm::int8>(); | |
| 		Error += run<glm::int16>(); | |
| 		Error += run<glm::int32>(); | |
| 		Error += run<glm::int64>(); | |
| 
 | |
| 		Error += run<glm::uint8>(); | |
| 		Error += run<glm::uint16>(); | |
| 		Error += run<glm::uint32>(); | |
| 		Error += run<glm::uint64>(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace nextPowerOfTwo | |
|  | |
| namespace prevMultiple | |
| { | |
| 	template<typename genIUType> | |
| 	struct type | |
| 	{ | |
| 		genIUType Source; | |
| 		genIUType Multiple; | |
| 		genIUType Return; | |
| 	}; | |
| 
 | |
| 	template <typename T> | |
| 	int run() | |
| 	{ | |
| 		type<T> const Data[] = | |
| 		{ | |
| 			{8, 3, 6}, | |
| 			{7, 7, 7} | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 		 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | |
| 		{ | |
| 			T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		Error += run<glm::int8>(); | |
| 		Error += run<glm::int16>(); | |
| 		Error += run<glm::int32>(); | |
| 		Error += run<glm::int64>(); | |
| 
 | |
| 		Error += run<glm::uint8>(); | |
| 		Error += run<glm::uint16>(); | |
| 		Error += run<glm::uint32>(); | |
| 		Error += run<glm::uint64>(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace prevMultiple | |
|  | |
| namespace nextMultiple | |
| { | |
| 	static glm::uint const Multiples = 128; | |
| 
 | |
| 	int perf_nextMultiple(glm::uint Samples) | |
| 	{ | |
| 		std::vector<glm::uint> Results(Samples * Multiples); | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source) | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
| 		{ | |
| 			Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples); | |
| 		} | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
| 
 | |
| 		glm::uint Result = 0; | |
| 		for(std::size_t i = 0, n = Results.size(); i < n; ++i) | |
| 			Result += Results[i]; | |
| 
 | |
| 		return Result > 0 ? 0 : 1; | |
| 	} | |
| 
 | |
| 	template <typename T> | |
| 	GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple) | |
| 	{ | |
| 		T const Tmp = Source - static_cast<T>(1); | |
| 		return Tmp + (Multiple - (Tmp % Multiple)); | |
| 	} | |
| 
 | |
| 	int perf_nextMultipleMod(glm::uint Samples) | |
| 	{ | |
| 		std::vector<glm::uint> Results(Samples * Multiples); | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
| 			for (glm::uint Source = 0; Source < Samples; ++Source) | |
| 		{ | |
| 			Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples); | |
| 		} | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
| 
 | |
| 		glm::uint Result = 0; | |
| 		for(std::size_t i = 0, n = Results.size(); i < n; ++i) | |
| 			Result += Results[i]; | |
| 
 | |
| 		return Result > 0 ? 0 : 1; | |
| 	} | |
| 
 | |
| 	template <typename T> | |
| 	GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple) | |
| 	{ | |
| 		if(Source > static_cast<T>(0)) | |
| 		{ | |
| 			T const Tmp = Source - static_cast<T>(1); | |
| 			return Tmp + (Multiple - (Tmp % Multiple)); | |
| 		} | |
| 		else | |
| 			return Source + (-Source % Multiple); | |
| 	} | |
| 
 | |
| 	int perf_nextMultipleNeg(glm::uint Samples) | |
| 	{ | |
| 		std::vector<glm::uint> Results(Samples * Multiples); | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source) | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
| 		{ | |
| 			Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples); | |
| 		} | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
| 
 | |
| 		glm::uint Result = 0; | |
| 		for (std::size_t i = 0, n = Results.size(); i < n; ++i) | |
| 			Result += Results[i]; | |
| 
 | |
| 		return Result > 0 ? 0 : 1; | |
| 	} | |
| 
 | |
| 	template <typename T> | |
| 	GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple) | |
| 	{ | |
| 		return Source + (Multiple - std::fmod(Source, Multiple)); | |
| 	} | |
| 
 | |
| 	int perf_nextMultipleUFloat(glm::uint Samples) | |
| 	{ | |
| 		std::vector<float> Results(Samples * Multiples); | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source) | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
| 		{ | |
| 			Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples)); | |
| 		} | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
| 
 | |
| 		float Result = 0; | |
| 		for (std::size_t i = 0, n = Results.size(); i < n; ++i) | |
| 			Result += Results[i]; | |
| 
 | |
| 		return Result > 0.0f ? 0 : 1; | |
| 	} | |
| 
 | |
| 	template <typename T> | |
| 	GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple) | |
| 	{ | |
| 		if(Source > static_cast<float>(0)) | |
| 			return Source + (Multiple - std::fmod(Source, Multiple)); | |
| 		else | |
| 			return Source + std::fmod(-Source, Multiple); | |
| 	} | |
| 
 | |
| 	int perf_nextMultipleFloat(glm::uint Samples) | |
| 	{ | |
| 		std::vector<float> Results(Samples * Multiples); | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source) | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
| 		{ | |
| 			Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples)); | |
| 		} | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
| 
 | |
| 		std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
| 
 | |
| 		float Result = 0; | |
| 		for (std::size_t i = 0, n = Results.size(); i < n; ++i) | |
| 			Result += Results[i]; | |
| 
 | |
| 		return Result > 0.0f ? 0 : 1; | |
| 	} | |
| 
 | |
| 	template<typename genIUType> | |
| 	struct type | |
| 	{ | |
| 		genIUType Source; | |
| 		genIUType Multiple; | |
| 		genIUType Return; | |
| 	}; | |
| 
 | |
| 	template <typename T> | |
| 	int test_uint() | |
| 	{ | |
| 		type<T> const Data[] = | |
| 		{ | |
| 			{ 3, 4, 4 }, | |
| 			{ 6, 3, 6 }, | |
| 			{ 5, 3, 6 }, | |
| 			{ 7, 7, 7 }, | |
| 			{ 0, 1, 0 }, | |
| 			{ 8, 3, 9 } | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | |
| 		{ | |
| 			T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple); | |
| 			Error += Data[i].Return == Result0 ? 0 : 1; | |
| 			assert(!Error); | |
| 
 | |
| 			T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple); | |
| 			Error += Data[i].Return == Result1 ? 0 : 1; | |
| 			assert(!Error); | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int perf() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		glm::uint const Samples = 10000; | |
| 
 | |
| 		for(int i = 0; i < 4; ++i) | |
| 		{ | |
| 			std::printf("Run %d :\n", i); | |
| 			Error += perf_nextMultiple(Samples); | |
| 			Error += perf_nextMultipleMod(Samples); | |
| 			Error += perf_nextMultipleNeg(Samples); | |
| 			Error += perf_nextMultipleUFloat(Samples); | |
| 			Error += perf_nextMultipleFloat(Samples); | |
| 			std::printf("\n"); | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		Error += test_uint<glm::int8>(); | |
| 		Error += test_uint<glm::int16>(); | |
| 		Error += test_uint<glm::int32>(); | |
| 		Error += test_uint<glm::int64>(); | |
| 
 | |
| 		Error += test_uint<glm::uint8>(); | |
| 		Error += test_uint<glm::uint16>(); | |
| 		Error += test_uint<glm::uint32>(); | |
| 		Error += test_uint<glm::uint64>(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace nextMultiple | |
|  | |
| namespace findNSB | |
| { | |
| 	template<typename T> | |
| 	struct type | |
| 	{ | |
| 		T Source; | |
| 		int SignificantBitCount; | |
| 		int Return; | |
| 	}; | |
| 
 | |
| 	template <typename T> | |
| 	int run() | |
| 	{ | |
| 		type<T> const Data[] = | |
| 		{ | |
| 			{ 0x00, 1,-1 }, | |
| 			{ 0x01, 2,-1 }, | |
| 			{ 0x02, 2,-1 }, | |
| 			{ 0x06, 3,-1 }, | |
| 			{ 0x01, 1, 0 }, | |
| 			{ 0x03, 1, 0 }, | |
| 			{ 0x03, 2, 1 }, | |
| 			{ 0x07, 2, 1 }, | |
| 			{ 0x05, 2, 2 }, | |
| 			{ 0x0D, 2, 2 } | |
| 		}; | |
| 
 | |
| 		int Error = 0; | |
| 
 | |
| 		for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | |
| 		{ | |
| 			int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount); | |
| 			Error += Data[i].Return == Result0 ? 0 : 1; | |
| 			assert(!Error); | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error = 0; | |
| 
 | |
| 		Error += run<glm::uint8>(); | |
| 		Error += run<glm::uint16>(); | |
| 		Error += run<glm::uint32>(); | |
| 		Error += run<glm::uint64>(); | |
| 
 | |
| 		Error += run<glm::int8>(); | |
| 		Error += run<glm::int16>(); | |
| 		Error += run<glm::int32>(); | |
| 		Error += run<glm::int64>(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace findNSB | |
|  | |
| int main() | |
| { | |
| 	int Error = 0; | |
| 
 | |
| 	Error += findNSB::test(); | |
| 
 | |
| 	Error += isPowerOfTwo::test(); | |
| 	Error += prevPowerOfTwo::test(); | |
| 	Error += nextPowerOfTwo::test(); | |
| 	Error += nextPowerOfTwo_advanced::test(); | |
| 	Error += prevMultiple::test(); | |
| 	Error += nextMultiple::test(); | |
| 
 | |
| #	ifdef NDEBUG | |
| 		Error += nextPowerOfTwo_advanced::perf(); | |
| 		Error += nextMultiple::perf(); | |
| #	endif//NDEBUG | |
|  | |
| 	return Error; | |
| } | |
| 
 | |
| #else | |
|  | |
| int main() | |
| { | |
| 	return 0; | |
| } | |
| 
 | |
| #endif
 | |
| 
 |