You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
514 lines
14 KiB
514 lines
14 KiB
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// Created : 2010-09-16 |
|
// Updated : 2010-09-16 |
|
// Licence : This source is under MIT licence |
|
// File : test/gtx/bit.cpp |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include <glm/gtx/bit.hpp> |
|
#include <glm/gtc/type_precision.hpp> |
|
|
|
#if(GLM_ARCH != GLM_ARCH_PURE) |
|
# include <glm/detail/intrinsic_integer.hpp> |
|
#endif |
|
|
|
#include <iostream> |
|
#include <vector> |
|
#include <ctime> |
|
|
|
enum result |
|
{ |
|
SUCCESS, |
|
FAIL, |
|
ASSERT, |
|
STATIC_ASSERT |
|
}; |
|
|
|
namespace bitRevert |
|
{ |
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
typedef type<glm::uint64> typeU64; |
|
|
|
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) |
|
typeU64 const Data64[] = |
|
{ |
|
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS}, |
|
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS}, |
|
{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS}, |
|
}; |
|
#else |
|
typeU64 const Data64[] = |
|
{ |
|
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, |
|
{0x0000000000000000, 0x0000000000000000, SUCCESS}, |
|
{0xf000000000000000, 0x000000000000000f, SUCCESS}, |
|
}; |
|
#endif |
|
|
|
int test() |
|
{ |
|
glm::uint32 count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(glm::uint32 i = 0; i < count; ++i) |
|
{ |
|
glm::uint64 Return = glm::bitRevert( |
|
Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS && Compare) |
|
continue; |
|
else if(Data64[i].Result == FAIL && !Compare) |
|
continue; |
|
|
|
std::cout << "glm::extractfield test fail on test " << i << std::endl; |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
}//bitRevert |
|
|
|
namespace bitfieldInterleave |
|
{ |
|
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1; |
|
glm::uint64 REG2; |
|
|
|
REG1 = x; |
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
|
|
REG2 = y; |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1; |
|
glm::uint64 REG2; |
|
|
|
REG1 = x; |
|
REG2 = y; |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
static glm::uint64 const Mask[5] = |
|
{ |
|
0x5555555555555555, |
|
0x3333333333333333, |
|
0x0F0F0F0F0F0F0F0F, |
|
0x00FF00FF00FF00FF, |
|
0x0000FFFF0000FFFF |
|
}; |
|
|
|
glm::uint64 REG1 = x; |
|
glm::uint64 REG2 = y; |
|
for(int i = 4; i >= 0; --i) |
|
{ |
|
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; |
|
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; |
|
} |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
#if(GLM_ARCH != GLM_ARCH_PURE) |
|
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_load_si128((__m128i*)Array); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
GLM_ALIGN(16) glm::uint64 Result[2]; |
|
_mm_store_si128((__m128i*)Result, Reg1); |
|
|
|
return Result[0]; |
|
} |
|
|
|
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_loadu_si128((__m128i*)Array); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
glm::uint64 Result[2]; |
|
_mm_storeu_si128((__m128i*)Result, Reg1); |
|
|
|
return Result[0]; |
|
} |
|
#endif//(GLM_ARCH != GLM_ARCH_PURE) |
|
|
|
int test() |
|
{ |
|
glm::uint32 x_max = 1 << 11; |
|
glm::uint32 y_max = 1 << 10; |
|
|
|
// ALU |
|
std::vector<glm::uint64> Data(x_max * y_max); |
|
std::vector<glm::u32vec2> Param(x_max * y_max); |
|
for(glm::uint32 i = 0; i < Param.size(); ++i) |
|
Param[i] = glm::u32vec2(i % x_max, i / y_max); |
|
|
|
{ |
|
for(glm::uint32 y = 0; y < (1 << 10); ++y) |
|
for(glm::uint32 x = 0; x < (1 << 10); ++x) |
|
{ |
|
glm::uint64 A = glm::bitfieldInterleave(x, y); |
|
glm::uint64 B = fastBitfieldInterleave(x, y); |
|
glm::uint64 C = loopBitfieldInterleave(x, y); |
|
glm::uint64 D = interleaveBitfieldInterleave(x, y); |
|
|
|
assert(A == B); |
|
assert(A == C); |
|
assert(A == D); |
|
|
|
# if(GLM_ARCH != GLM_ARCH_PURE) |
|
glm::uint64 E = sseBitfieldInterleave(x, y); |
|
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); |
|
assert(A == E); |
|
assert(A == F); |
|
|
|
__m128i G = glm::detail::_mm_bit_interleave_si128(_mm_set_epi32(0, y, 0, x)); |
|
glm::uint64 Result[2]; |
|
_mm_storeu_si128((__m128i*)Result, G); |
|
assert(A == Result[0]); |
|
# endif//(GLM_ARCH != GLM_ARCH_PURE) |
|
} |
|
} |
|
|
|
{ |
|
for(glm::uint8 y = 0; y < 127; ++y) |
|
for(glm::uint8 x = 0; x < 127; ++x) |
|
{ |
|
glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y))); |
|
glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y))); |
|
glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y))); |
|
|
|
glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); |
|
glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); |
|
glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); |
|
|
|
assert(D == E); |
|
assert(D == F); |
|
} |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "glm::bitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "fastBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "loopBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "interleaveBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
# if(GLM_ARCH != GLM_ARCH_PURE) |
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "sseBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
# endif//(GLM_ARCH != GLM_ARCH_PURE) |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "glm::detail::bitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
# if(GLM_ARCH != GLM_ARCH_PURE) |
|
{ |
|
// SIMD |
|
std::vector<__m128i> SimdData(x_max * y_max); |
|
std::vector<__m128i> SimdParam(x_max * y_max); |
|
for(int i = 0; i < SimdParam.size(); ++i) |
|
SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0); |
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < SimdData.size(); ++i) |
|
SimdData[i] = glm::detail::_mm_bit_interleave_si128(SimdParam[i]); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl; |
|
} |
|
# endif//(GLM_ARCH != GLM_ARCH_PURE) |
|
|
|
return 0; |
|
} |
|
} |
|
|
|
namespace bitfieldInterleave3 |
|
{ |
|
template <typename PARAM, typename RET> |
|
inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) |
|
{ |
|
RET Result = 0; |
|
for(RET i = 0; i < sizeof(PARAM) * 8; ++i) |
|
{ |
|
Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); |
|
Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); |
|
Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); |
|
} |
|
return Result; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
glm::uint16 x_max = 1 << 11; |
|
glm::uint16 y_max = 1 << 11; |
|
glm::uint16 z_max = 1 << 11; |
|
|
|
for(glm::uint16 z = 0; z < z_max; z += 27) |
|
for(glm::uint16 y = 0; y < y_max; y += 27) |
|
for(glm::uint16 x = 0; x < x_max; x += 27) |
|
{ |
|
glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); |
|
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); |
|
Error += ResultA == ResultB ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace bitfieldInterleave4 |
|
{ |
|
template <typename PARAM, typename RET> |
|
inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) |
|
{ |
|
RET const v[4] = {x, y, z, w}; |
|
RET Result = 0; |
|
for(RET i = 0; i < sizeof(PARAM) * 8; i++) |
|
{ |
|
Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); |
|
Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); |
|
Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); |
|
Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); |
|
} |
|
return Result; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
glm::uint16 x_max = 1 << 11; |
|
glm::uint16 y_max = 1 << 11; |
|
glm::uint16 z_max = 1 << 11; |
|
glm::uint16 w_max = 1 << 11; |
|
|
|
for(glm::uint16 w = 0; w < w_max; w += 27) |
|
for(glm::uint16 z = 0; z < z_max; z += 27) |
|
for(glm::uint16 y = 0; y < y_max; y += 27) |
|
for(glm::uint16 x = 0; x < x_max; x += 27) |
|
{ |
|
glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); |
|
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); |
|
Error += ResultA == ResultB ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
int main() |
|
{ |
|
int Error(0); |
|
|
|
Error += ::bitfieldInterleave3::test(); |
|
Error += ::bitfieldInterleave4::test(); |
|
Error += ::bitfieldInterleave::test(); |
|
Error += ::bitRevert::test(); |
|
|
|
return Error; |
|
}
|
|
|