You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
609 lines
19 KiB
609 lines
19 KiB
// Boost rational.hpp header file ------------------------------------------// |
|
|
|
// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and |
|
// distribute this software is granted provided this copyright notice appears |
|
// in all copies. This software is provided "as is" without express or |
|
// implied warranty, and with no claim as to its suitability for any purpose. |
|
|
|
// boostinspect:nolicense (don't complain about the lack of a Boost license) |
|
// (Paul Moore hasn't been in contact for years, so there's no way to change the |
|
// license.) |
|
|
|
// See http://www.boost.org/libs/rational for documentation. |
|
|
|
// Credits: |
|
// Thanks to the boost mailing list in general for useful comments. |
|
// Particular contributions included: |
|
// Andrew D Jewell, for reminding me to take care to avoid overflow |
|
// Ed Brey, for many comments, including picking up on some dreadful typos |
|
// Stephen Silver contributed the test suite and comments on user-defined |
|
// IntType |
|
// Nickolay Mladenov, for the implementation of operator+= |
|
|
|
// Revision History |
|
// 05 Nov 06 Change rational_cast to not depend on division between different |
|
// types (Daryle Walker) |
|
// 04 Nov 06 Off-load GCD and LCM to Boost.Math; add some invariant checks; |
|
// add std::numeric_limits<> requirement to help GCD (Daryle Walker) |
|
// 31 Oct 06 Recoded both operator< to use round-to-negative-infinity |
|
// divisions; the rational-value version now uses continued fraction |
|
// expansion to avoid overflows, for bug #798357 (Daryle Walker) |
|
// 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) |
|
// 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config |
|
// (Joaquín M López Muñoz) |
|
// 27 Dec 05 Add Boolean conversion operator (Daryle Walker) |
|
// 28 Sep 02 Use _left versions of operators from operators.hpp |
|
// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel) |
|
// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams) |
|
// 05 Feb 01 Update operator>> to tighten up input syntax |
|
// 05 Feb 01 Final tidy up of gcd code prior to the new release |
|
// 27 Jan 01 Recode abs() without relying on abs(IntType) |
|
// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm, |
|
// tidy up a number of areas, use newer features of operators.hpp |
|
// (reduces space overhead to zero), add operator!, |
|
// introduce explicit mixed-mode arithmetic operations |
|
// 12 Jan 01 Include fixes to handle a user-defined IntType better |
|
// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David) |
|
// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++ |
|
// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not |
|
// affected (Beman Dawes) |
|
// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer) |
|
// 14 Dec 99 Modifications based on comments from the boost list |
|
// 09 Dec 99 Initial Version (Paul Moore) |
|
|
|
#ifndef BOOST_RATIONAL_HPP |
|
#define BOOST_RATIONAL_HPP |
|
|
|
#include <iostream> // for std::istream and std::ostream |
|
#include <ios> // for std::noskipws |
|
#include <stdexcept> // for std::domain_error |
|
#include <string> // for std::string implicit constructor |
|
#include <boost/operators.hpp> // for boost::addable etc |
|
#include <cstdlib> // for std::abs |
|
#include <boost/call_traits.hpp> // for boost::call_traits |
|
#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC |
|
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND |
|
#include <boost/assert.hpp> // for BOOST_ASSERT |
|
#include <boost/math/common_factor_rt.hpp> // for boost::math::gcd, lcm |
|
#include <limits> // for std::numeric_limits |
|
#include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT |
|
|
|
// Control whether depreciated GCD and LCM functions are included (default: yes) |
|
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD |
|
#define BOOST_CONTROL_RATIONAL_HAS_GCD 1 |
|
#endif |
|
|
|
namespace boost { |
|
|
|
#if BOOST_CONTROL_RATIONAL_HAS_GCD |
|
template <typename IntType> |
|
IntType gcd(IntType n, IntType m) |
|
{ |
|
// Defer to the version in Boost.Math |
|
return math::gcd( n, m ); |
|
} |
|
|
|
template <typename IntType> |
|
IntType lcm(IntType n, IntType m) |
|
{ |
|
// Defer to the version in Boost.Math |
|
return math::lcm( n, m ); |
|
} |
|
#endif // BOOST_CONTROL_RATIONAL_HAS_GCD |
|
|
|
class bad_rational : public std::domain_error |
|
{ |
|
public: |
|
explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} |
|
}; |
|
|
|
template <typename IntType> |
|
class rational; |
|
|
|
template <typename IntType> |
|
rational<IntType> abs(const rational<IntType>& r); |
|
|
|
template <typename IntType> |
|
class rational : |
|
less_than_comparable < rational<IntType>, |
|
equality_comparable < rational<IntType>, |
|
less_than_comparable2 < rational<IntType>, IntType, |
|
equality_comparable2 < rational<IntType>, IntType, |
|
addable < rational<IntType>, |
|
subtractable < rational<IntType>, |
|
multipliable < rational<IntType>, |
|
dividable < rational<IntType>, |
|
addable2 < rational<IntType>, IntType, |
|
subtractable2 < rational<IntType>, IntType, |
|
subtractable2_left < rational<IntType>, IntType, |
|
multipliable2 < rational<IntType>, IntType, |
|
dividable2 < rational<IntType>, IntType, |
|
dividable2_left < rational<IntType>, IntType, |
|
incrementable < rational<IntType>, |
|
decrementable < rational<IntType> |
|
> > > > > > > > > > > > > > > > |
|
{ |
|
// Class-wide pre-conditions |
|
BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized ); |
|
|
|
// Helper types |
|
typedef typename boost::call_traits<IntType>::param_type param_type; |
|
|
|
struct helper { IntType parts[2]; }; |
|
typedef IntType (helper::* bool_type)[2]; |
|
|
|
public: |
|
typedef IntType int_type; |
|
rational() : num(0), den(1) {} |
|
rational(param_type n) : num(n), den(1) {} |
|
rational(param_type n, param_type d) : num(n), den(d) { normalize(); } |
|
|
|
// Default copy constructor and assignment are fine |
|
|
|
// Add assignment from IntType |
|
rational& operator=(param_type n) { return assign(n, 1); } |
|
|
|
// Assign in place |
|
rational& assign(param_type n, param_type d); |
|
|
|
// Access to representation |
|
IntType numerator() const { return num; } |
|
IntType denominator() const { return den; } |
|
|
|
// Arithmetic assignment operators |
|
rational& operator+= (const rational& r); |
|
rational& operator-= (const rational& r); |
|
rational& operator*= (const rational& r); |
|
rational& operator/= (const rational& r); |
|
|
|
rational& operator+= (param_type i); |
|
rational& operator-= (param_type i); |
|
rational& operator*= (param_type i); |
|
rational& operator/= (param_type i); |
|
|
|
// Increment and decrement |
|
const rational& operator++(); |
|
const rational& operator--(); |
|
|
|
// Operator not |
|
bool operator!() const { return !num; } |
|
|
|
// Boolean conversion |
|
|
|
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003) |
|
// The "ISO C++ Template Parser" option in CW 8.3 chokes on the |
|
// following, hence we selectively disable that option for the |
|
// offending memfun. |
|
#pragma parse_mfunc_templ off |
|
#endif |
|
|
|
operator bool_type() const { return operator !() ? 0 : &helper::parts; } |
|
|
|
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003) |
|
#pragma parse_mfunc_templ reset |
|
#endif |
|
|
|
// Comparison operators |
|
bool operator< (const rational& r) const; |
|
bool operator== (const rational& r) const; |
|
|
|
bool operator< (param_type i) const; |
|
bool operator> (param_type i) const; |
|
bool operator== (param_type i) const; |
|
|
|
private: |
|
// Implementation - numerator and denominator (normalized). |
|
// Other possibilities - separate whole-part, or sign, fields? |
|
IntType num; |
|
IntType den; |
|
|
|
// Representation note: Fractions are kept in normalized form at all |
|
// times. normalized form is defined as gcd(num,den) == 1 and den > 0. |
|
// In particular, note that the implementation of abs() below relies |
|
// on den always being positive. |
|
bool test_invariant() const; |
|
void normalize(); |
|
}; |
|
|
|
// Assign in place |
|
template <typename IntType> |
|
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d) |
|
{ |
|
num = n; |
|
den = d; |
|
normalize(); |
|
return *this; |
|
} |
|
|
|
// Unary plus and minus |
|
template <typename IntType> |
|
inline rational<IntType> operator+ (const rational<IntType>& r) |
|
{ |
|
return r; |
|
} |
|
|
|
template <typename IntType> |
|
inline rational<IntType> operator- (const rational<IntType>& r) |
|
{ |
|
return rational<IntType>(-r.numerator(), r.denominator()); |
|
} |
|
|
|
// Arithmetic assignment operators |
|
template <typename IntType> |
|
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r) |
|
{ |
|
// This calculation avoids overflow, and minimises the number of expensive |
|
// calculations. Thanks to Nickolay Mladenov for this algorithm. |
|
// |
|
// Proof: |
|
// We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. |
|
// Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 |
|
// |
|
// The result is (a*d1 + c*b1) / (b1*d1*g). |
|
// Now we have to normalize this ratio. |
|
// Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 |
|
// If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. |
|
// But since gcd(a,b1)=1 we have h=1. |
|
// Similarly h|d1 leads to h=1. |
|
// So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g |
|
// Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) |
|
// Which proves that instead of normalizing the result, it is better to |
|
// divide num and den by gcd((a*d1 + c*b1), g) |
|
|
|
// Protect against self-modification |
|
IntType r_num = r.num; |
|
IntType r_den = r.den; |
|
|
|
IntType g = math::gcd(den, r_den); |
|
den /= g; // = b1 from the calculations above |
|
num = num * (r_den / g) + r_num * den; |
|
g = math::gcd(num, g); |
|
num /= g; |
|
den *= r_den/g; |
|
|
|
return *this; |
|
} |
|
|
|
template <typename IntType> |
|
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r) |
|
{ |
|
// Protect against self-modification |
|
IntType r_num = r.num; |
|
IntType r_den = r.den; |
|
|
|
// This calculation avoids overflow, and minimises the number of expensive |
|
// calculations. It corresponds exactly to the += case above |
|
IntType g = math::gcd(den, r_den); |
|
den /= g; |
|
num = num * (r_den / g) - r_num * den; |
|
g = math::gcd(num, g); |
|
num /= g; |
|
den *= r_den/g; |
|
|
|
return *this; |
|
} |
|
|
|
template <typename IntType> |
|
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r) |
|
{ |
|
// Protect against self-modification |
|
IntType r_num = r.num; |
|
IntType r_den = r.den; |
|
|
|
// Avoid overflow and preserve normalization |
|
IntType gcd1 = math::gcd(num, r_den); |
|
IntType gcd2 = math::gcd(r_num, den); |
|
num = (num/gcd1) * (r_num/gcd2); |
|
den = (den/gcd2) * (r_den/gcd1); |
|
return *this; |
|
} |
|
|
|
template <typename IntType> |
|
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r) |
|
{ |
|
// Protect against self-modification |
|
IntType r_num = r.num; |
|
IntType r_den = r.den; |
|
|
|
// Avoid repeated construction |
|
IntType zero(0); |
|
|
|
// Trap division by zero |
|
if (r_num == zero) |
|
throw bad_rational(); |
|
if (num == zero) |
|
return *this; |
|
|
|
// Avoid overflow and preserve normalization |
|
IntType gcd1 = math::gcd(num, r_num); |
|
IntType gcd2 = math::gcd(r_den, den); |
|
num = (num/gcd1) * (r_den/gcd2); |
|
den = (den/gcd2) * (r_num/gcd1); |
|
|
|
if (den < zero) { |
|
num = -num; |
|
den = -den; |
|
} |
|
return *this; |
|
} |
|
|
|
// Mixed-mode operators |
|
template <typename IntType> |
|
inline rational<IntType>& |
|
rational<IntType>::operator+= (param_type i) |
|
{ |
|
return operator+= (rational<IntType>(i)); |
|
} |
|
|
|
template <typename IntType> |
|
inline rational<IntType>& |
|
rational<IntType>::operator-= (param_type i) |
|
{ |
|
return operator-= (rational<IntType>(i)); |
|
} |
|
|
|
template <typename IntType> |
|
inline rational<IntType>& |
|
rational<IntType>::operator*= (param_type i) |
|
{ |
|
return operator*= (rational<IntType>(i)); |
|
} |
|
|
|
template <typename IntType> |
|
inline rational<IntType>& |
|
rational<IntType>::operator/= (param_type i) |
|
{ |
|
return operator/= (rational<IntType>(i)); |
|
} |
|
|
|
// Increment and decrement |
|
template <typename IntType> |
|
inline const rational<IntType>& rational<IntType>::operator++() |
|
{ |
|
// This can never denormalise the fraction |
|
num += den; |
|
return *this; |
|
} |
|
|
|
template <typename IntType> |
|
inline const rational<IntType>& rational<IntType>::operator--() |
|
{ |
|
// This can never denormalise the fraction |
|
num -= den; |
|
return *this; |
|
} |
|
|
|
// Comparison operators |
|
template <typename IntType> |
|
bool rational<IntType>::operator< (const rational<IntType>& r) const |
|
{ |
|
// Avoid repeated construction |
|
int_type const zero( 0 ); |
|
|
|
// This should really be a class-wide invariant. The reason for these |
|
// checks is that for 2's complement systems, INT_MIN has no corresponding |
|
// positive, so negating it during normalization keeps it INT_MIN, which |
|
// is bad for later calculations that assume a positive denominator. |
|
BOOST_ASSERT( this->den > zero ); |
|
BOOST_ASSERT( r.den > zero ); |
|
|
|
// Determine relative order by expanding each value to its simple continued |
|
// fraction representation using the Euclidian GCD algorithm. |
|
struct { int_type n, d, q, r; } ts = { this->num, this->den, this->num / |
|
this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den, |
|
r.num % r.den }; |
|
unsigned reverse = 0u; |
|
|
|
// Normalize negative moduli by repeatedly adding the (positive) denominator |
|
// and decrementing the quotient. Later cycles should have all positive |
|
// values, so this only has to be done for the first cycle. (The rules of |
|
// C++ require a nonnegative quotient & remainder for a nonnegative dividend |
|
// & positive divisor.) |
|
while ( ts.r < zero ) { ts.r += ts.d; --ts.q; } |
|
while ( rs.r < zero ) { rs.r += rs.d; --rs.q; } |
|
|
|
// Loop through and compare each variable's continued-fraction components |
|
while ( true ) |
|
{ |
|
// The quotients of the current cycle are the continued-fraction |
|
// components. Comparing two c.f. is comparing their sequences, |
|
// stopping at the first difference. |
|
if ( ts.q != rs.q ) |
|
{ |
|
// Since reciprocation changes the relative order of two variables, |
|
// and c.f. use reciprocals, the less/greater-than test reverses |
|
// after each index. (Start w/ non-reversed @ whole-number place.) |
|
return reverse ? ts.q > rs.q : ts.q < rs.q; |
|
} |
|
|
|
// Prepare the next cycle |
|
reverse ^= 1u; |
|
|
|
if ( (ts.r == zero) || (rs.r == zero) ) |
|
{ |
|
// At least one variable's c.f. expansion has ended |
|
break; |
|
} |
|
|
|
ts.n = ts.d; ts.d = ts.r; |
|
ts.q = ts.n / ts.d; ts.r = ts.n % ts.d; |
|
rs.n = rs.d; rs.d = rs.r; |
|
rs.q = rs.n / rs.d; rs.r = rs.n % rs.d; |
|
} |
|
|
|
// Compare infinity-valued components for otherwise equal sequences |
|
if ( ts.r == rs.r ) |
|
{ |
|
// Both remainders are zero, so the next (and subsequent) c.f. |
|
// components for both sequences are infinity. Therefore, the sequences |
|
// and their corresponding values are equal. |
|
return false; |
|
} |
|
else |
|
{ |
|
#ifdef BOOST_MSVC |
|
#pragma warning(push) |
|
#pragma warning(disable:4800) |
|
#endif |
|
// Exactly one of the remainders is zero, so all following c.f. |
|
// components of that variable are infinity, while the other variable |
|
// has a finite next c.f. component. So that other variable has the |
|
// lesser value (modulo the reversal flag!). |
|
return ( ts.r != zero ) != static_cast<bool>( reverse ); |
|
#ifdef BOOST_MSVC |
|
#pragma warning(pop) |
|
#endif |
|
} |
|
} |
|
|
|
template <typename IntType> |
|
bool rational<IntType>::operator< (param_type i) const |
|
{ |
|
// Avoid repeated construction |
|
int_type const zero( 0 ); |
|
|
|
// Break value into mixed-fraction form, w/ always-nonnegative remainder |
|
BOOST_ASSERT( this->den > zero ); |
|
int_type q = this->num / this->den, r = this->num % this->den; |
|
while ( r < zero ) { r += this->den; --q; } |
|
|
|
// Compare with just the quotient, since the remainder always bumps the |
|
// value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i |
|
// then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then |
|
// q >= i + 1 > i; therefore n/d < i iff q < i.] |
|
return q < i; |
|
} |
|
|
|
template <typename IntType> |
|
bool rational<IntType>::operator> (param_type i) const |
|
{ |
|
// Trap equality first |
|
if (num == i && den == IntType(1)) |
|
return false; |
|
|
|
// Otherwise, we can use operator< |
|
return !operator<(i); |
|
} |
|
|
|
template <typename IntType> |
|
inline bool rational<IntType>::operator== (const rational<IntType>& r) const |
|
{ |
|
return ((num == r.num) && (den == r.den)); |
|
} |
|
|
|
template <typename IntType> |
|
inline bool rational<IntType>::operator== (param_type i) const |
|
{ |
|
return ((den == IntType(1)) && (num == i)); |
|
} |
|
|
|
// Invariant check |
|
template <typename IntType> |
|
inline bool rational<IntType>::test_invariant() const |
|
{ |
|
return ( this->den > int_type(0) ) && ( math::gcd(this->num, this->den) == |
|
int_type(1) ); |
|
} |
|
|
|
// Normalisation |
|
template <typename IntType> |
|
void rational<IntType>::normalize() |
|
{ |
|
// Avoid repeated construction |
|
IntType zero(0); |
|
|
|
if (den == zero) |
|
throw bad_rational(); |
|
|
|
// Handle the case of zero separately, to avoid division by zero |
|
if (num == zero) { |
|
den = IntType(1); |
|
return; |
|
} |
|
|
|
IntType g = math::gcd(num, den); |
|
|
|
num /= g; |
|
den /= g; |
|
|
|
// Ensure that the denominator is positive |
|
if (den < zero) { |
|
num = -num; |
|
den = -den; |
|
} |
|
|
|
BOOST_ASSERT( this->test_invariant() ); |
|
} |
|
|
|
namespace detail { |
|
|
|
// A utility class to reset the format flags for an istream at end |
|
// of scope, even in case of exceptions |
|
struct resetter { |
|
resetter(std::istream& is) : is_(is), f_(is.flags()) {} |
|
~resetter() { is_.flags(f_); } |
|
std::istream& is_; |
|
std::istream::fmtflags f_; // old GNU c++ lib has no ios_base |
|
}; |
|
|
|
} |
|
|
|
// Input and output |
|
template <typename IntType> |
|
std::istream& operator>> (std::istream& is, rational<IntType>& r) |
|
{ |
|
IntType n = IntType(0), d = IntType(1); |
|
char c = 0; |
|
detail::resetter sentry(is); |
|
|
|
is >> n; |
|
c = is.get(); |
|
|
|
if (c != '/') |
|
is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base |
|
|
|
#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT |
|
is >> std::noskipws; |
|
#else |
|
is.unsetf(ios::skipws); // compiles, but seems to have no effect. |
|
#endif |
|
is >> d; |
|
|
|
if (is) |
|
r.assign(n, d); |
|
|
|
return is; |
|
} |
|
|
|
// Add manipulators for output format? |
|
template <typename IntType> |
|
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r) |
|
{ |
|
os << r.numerator() << '/' << r.denominator(); |
|
return os; |
|
} |
|
|
|
// Type conversion |
|
template <typename T, typename IntType> |
|
inline T rational_cast( |
|
const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) |
|
{ |
|
return static_cast<T>(src.numerator())/static_cast<T>(src.denominator()); |
|
} |
|
|
|
// Do not use any abs() defined on IntType - it isn't worth it, given the |
|
// difficulties involved (Koenig lookup required, there may not *be* an abs() |
|
// defined, etc etc). |
|
template <typename IntType> |
|
inline rational<IntType> abs(const rational<IntType>& r) |
|
{ |
|
if (r.numerator() >= IntType(0)) |
|
return r; |
|
|
|
return rational<IntType>(-r.numerator(), r.denominator()); |
|
} |
|
|
|
} // namespace boost |
|
|
|
#endif // BOOST_RATIONAL_HPP |
|
|
|
|