You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
149 lines
3.8 KiB
149 lines
3.8 KiB
/////////////////////////////////////////////////////////////////////////////////// |
|
/// OpenGL Mathematics (glm.g-truc.net) |
|
/// |
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) |
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy |
|
/// of this software and associated documentation files (the "Software"), to deal |
|
/// in the Software without restriction, including without limitation the rights |
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
/// copies of the Software, and to permit persons to whom the Software is |
|
/// furnished to do so, subject to the following conditions: |
|
/// |
|
/// The above copyright notice and this permission notice shall be included in |
|
/// all copies or substantial portions of the Software. |
|
/// |
|
/// Restrictions: |
|
/// By making use of the Software for military purposes, you choose to make |
|
/// a Bunny unhappy. |
|
/// |
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
/// THE SOFTWARE. |
|
/// |
|
/// @file test/core/func_exponential.cpp |
|
/// @date 2011-01-15 / 2011-09-13 |
|
/// @author Christophe Riccio |
|
/////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include <glm/common.hpp> |
|
#include <glm/exponential.hpp> |
|
#include <glm/gtc/ulp.hpp> |
|
#include <glm/gtc/vec1.hpp> |
|
|
|
int test_pow() |
|
{ |
|
int Error(0); |
|
|
|
float A = glm::pow(10.f, 10.f); |
|
glm::vec1 B = glm::pow(glm::vec1(10.f), glm::vec1(10.f)); |
|
glm::vec2 C = glm::pow(glm::vec2(10.f), glm::vec2(10.f)); |
|
glm::vec3 D = glm::pow(glm::vec3(10.f), glm::vec3(10.f)); |
|
glm::vec4 E = glm::pow(glm::vec4(10.f), glm::vec4(10.f)); |
|
|
|
return Error; |
|
} |
|
|
|
int test_exp() |
|
{ |
|
int Error(0); |
|
|
|
float A = glm::exp(10.f); |
|
glm::vec1 B = glm::exp(glm::vec1(10.f)); |
|
glm::vec2 C = glm::exp(glm::vec2(10.f)); |
|
glm::vec3 D = glm::exp(glm::vec3(10.f)); |
|
glm::vec4 E = glm::exp(glm::vec4(10.f)); |
|
|
|
return Error; |
|
} |
|
|
|
int test_log() |
|
{ |
|
int Error(0); |
|
|
|
float A = glm::log(10.f); |
|
glm::vec1 B = glm::log(glm::vec1(10.f)); |
|
glm::vec2 C = glm::log(glm::vec2(10.f)); |
|
glm::vec3 D = glm::log(glm::vec3(10.f)); |
|
glm::vec4 E = glm::log(glm::vec4(10.f)); |
|
|
|
return Error; |
|
} |
|
|
|
int test_exp2() |
|
{ |
|
int Error(0); |
|
|
|
float A = glm::exp2(10.f); |
|
glm::vec1 B = glm::exp2(glm::vec1(10.f)); |
|
glm::vec2 C = glm::exp2(glm::vec2(10.f)); |
|
glm::vec3 D = glm::exp2(glm::vec3(10.f)); |
|
glm::vec4 E = glm::exp2(glm::vec4(10.f)); |
|
|
|
return Error; |
|
} |
|
|
|
int test_log2() |
|
{ |
|
int Error(0); |
|
|
|
float A = glm::log2(10.f); |
|
glm::vec1 B = glm::log2(glm::vec1(10.f)); |
|
glm::vec2 C = glm::log2(glm::vec2(10.f)); |
|
glm::vec3 D = glm::log2(glm::vec3(10.f)); |
|
glm::vec4 E = glm::log2(glm::vec4(10.f)); |
|
|
|
return Error; |
|
} |
|
|
|
int test_sqrt() |
|
{ |
|
int Error(0); |
|
|
|
float A = glm::sqrt(10.f); |
|
glm::vec1 B = glm::sqrt(glm::vec1(10.f)); |
|
glm::vec2 C = glm::sqrt(glm::vec2(10.f)); |
|
glm::vec3 D = glm::sqrt(glm::vec3(10.f)); |
|
glm::vec4 E = glm::sqrt(glm::vec4(10.f)); |
|
|
|
return Error; |
|
} |
|
|
|
int test_inversesqrt() |
|
{ |
|
int Error(0); |
|
|
|
glm::uint ulp(0); |
|
float diff(0.0f); |
|
|
|
for(float f = 0.001f; f < 10.f; f *= 1.001f) |
|
{ |
|
glm::lowp_fvec1 u(f); |
|
glm::lowp_fvec1 lowp_v = glm::inversesqrt(u); |
|
float defaultp_v = glm::inversesqrt(f); |
|
|
|
ulp = glm::max(glm::float_distance(lowp_v.x, defaultp_v), ulp); |
|
diff = glm::abs(lowp_v.x - defaultp_v); |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int main() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_pow(); |
|
Error += test_exp(); |
|
Error += test_log(); |
|
Error += test_exp2(); |
|
Error += test_log2(); |
|
Error += test_sqrt(); |
|
Error += test_inversesqrt(); |
|
|
|
return Error; |
|
} |
|
|
|
|