You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							686 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
	
	
							686 lines
						
					
					
						
							15 KiB
						
					
					
				#include <glm/ext/scalar_integer.hpp> | 
						|
#include <glm/ext/scalar_int_sized.hpp> | 
						|
#include <glm/ext/scalar_uint_sized.hpp> | 
						|
#include <vector> | 
						|
#include <ctime> | 
						|
#include <cstdio> | 
						|
 | 
						|
#if GLM_LANG & GLM_LANG_CXX11_FLAG | 
						|
#include <chrono> | 
						|
 | 
						|
namespace isPowerOfTwo | 
						|
{ | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		bool		Return; | 
						|
	}; | 
						|
 | 
						|
	int test_int16() | 
						|
	{ | 
						|
		type<glm::int16> const Data[] = | 
						|
		{ | 
						|
			{0x0001, true}, | 
						|
			{0x0002, true}, | 
						|
			{0x0004, true}, | 
						|
			{0x0080, true}, | 
						|
			{0x0000, true}, | 
						|
			{0x0003, false} | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) | 
						|
		{ | 
						|
			bool Result = glm::isPowerOfTwo(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test_uint16() | 
						|
	{ | 
						|
		type<glm::uint16> const Data[] = | 
						|
		{ | 
						|
			{0x0001, true}, | 
						|
			{0x0002, true}, | 
						|
			{0x0004, true}, | 
						|
			{0x0000, true}, | 
						|
			{0x0000, true}, | 
						|
			{0x0003, false} | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) | 
						|
		{ | 
						|
			bool Result = glm::isPowerOfTwo(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test_int32() | 
						|
	{ | 
						|
		type<int> const Data[] = | 
						|
		{ | 
						|
			{0x00000001, true}, | 
						|
			{0x00000002, true}, | 
						|
			{0x00000004, true}, | 
						|
			{0x0000000f, false}, | 
						|
			{0x00000000, true}, | 
						|
			{0x00000003, false} | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | 
						|
		{ | 
						|
			bool Result = glm::isPowerOfTwo(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test_uint32() | 
						|
	{ | 
						|
		type<glm::uint> const Data[] = | 
						|
		{ | 
						|
			{0x00000001, true}, | 
						|
			{0x00000002, true}, | 
						|
			{0x00000004, true}, | 
						|
			{0x80000000, true}, | 
						|
			{0x00000000, true}, | 
						|
			{0x00000003, false} | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) | 
						|
		{ | 
						|
			bool Result = glm::isPowerOfTwo(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += test_int16(); | 
						|
		Error += test_uint16(); | 
						|
		Error += test_int32(); | 
						|
		Error += test_uint32(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//isPowerOfTwo | 
						|
 | 
						|
namespace nextPowerOfTwo_advanced | 
						|
{ | 
						|
	template<typename genIUType> | 
						|
	GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) | 
						|
	{ | 
						|
		genIUType tmp = Value; | 
						|
		genIUType result = genIUType(0); | 
						|
		while(tmp) | 
						|
		{ | 
						|
			result = (tmp & (~tmp + 1)); // grab lowest bit | 
						|
			tmp &= ~result; // clear lowest bit | 
						|
		} | 
						|
		return result; | 
						|
	} | 
						|
 | 
						|
	template<typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) | 
						|
	{ | 
						|
		return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; | 
						|
	} | 
						|
 | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		genType		Return; | 
						|
	}; | 
						|
 | 
						|
	int test_int32() | 
						|
	{ | 
						|
		type<glm::int32> const Data[] = | 
						|
		{ | 
						|
			{0x0000ffff, 0x00010000}, | 
						|
			{-3, -4}, | 
						|
			{-8, -8}, | 
						|
			{0x00000001, 0x00000001}, | 
						|
			{0x00000002, 0x00000002}, | 
						|
			{0x00000004, 0x00000004}, | 
						|
			{0x00000007, 0x00000008}, | 
						|
			{0x0000fff0, 0x00010000}, | 
						|
			{0x0000f000, 0x00010000}, | 
						|
			{0x08000000, 0x08000000}, | 
						|
			{0x00000000, 0x00000000}, | 
						|
			{0x00000003, 0x00000004} | 
						|
		}; | 
						|
 | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) | 
						|
		{ | 
						|
			glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test_uint32() | 
						|
	{ | 
						|
		type<glm::uint32> const Data[] = | 
						|
		{ | 
						|
			{0x00000001, 0x00000001}, | 
						|
			{0x00000002, 0x00000002}, | 
						|
			{0x00000004, 0x00000004}, | 
						|
			{0x00000007, 0x00000008}, | 
						|
			{0x0000ffff, 0x00010000}, | 
						|
			{0x0000fff0, 0x00010000}, | 
						|
			{0x0000f000, 0x00010000}, | 
						|
			{0x80000000, 0x80000000}, | 
						|
			{0x00000000, 0x00000000}, | 
						|
			{0x00000003, 0x00000004} | 
						|
		}; | 
						|
 | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) | 
						|
		{ | 
						|
			glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		std::vector<glm::uint> v; | 
						|
		v.resize(100000000); | 
						|
 | 
						|
		std::clock_t Timestramp0 = std::clock(); | 
						|
 | 
						|
		for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | 
						|
			v[i] = nextPowerOfTwo_loop(i); | 
						|
 | 
						|
		std::clock_t Timestramp1 = std::clock(); | 
						|
 | 
						|
		for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | 
						|
			v[i] = glm::nextPowerOfTwo(i); | 
						|
 | 
						|
		std::clock_t Timestramp2 = std::clock(); | 
						|
 | 
						|
		std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); | 
						|
		std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		Error += test_int32(); | 
						|
		Error += test_uint32(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace nextPowerOfTwo_advanced | 
						|
 | 
						|
namespace prevPowerOfTwo | 
						|
{ | 
						|
	template <typename T> | 
						|
	int run() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		T const A = glm::prevPowerOfTwo(static_cast<T>(7)); | 
						|
		Error += A == static_cast<T>(4) ? 0 : 1; | 
						|
 | 
						|
		T const B = glm::prevPowerOfTwo(static_cast<T>(15)); | 
						|
		Error += B == static_cast<T>(8) ? 0 : 1; | 
						|
 | 
						|
		T const C = glm::prevPowerOfTwo(static_cast<T>(31)); | 
						|
		Error += C == static_cast<T>(16) ? 0 : 1; | 
						|
 | 
						|
		T const D = glm::prevPowerOfTwo(static_cast<T>(32)); | 
						|
		Error += D == static_cast<T>(32) ? 0 : 1; | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += run<glm::int8>(); | 
						|
		Error += run<glm::int16>(); | 
						|
		Error += run<glm::int32>(); | 
						|
		Error += run<glm::int64>(); | 
						|
 | 
						|
		Error += run<glm::uint8>(); | 
						|
		Error += run<glm::uint16>(); | 
						|
		Error += run<glm::uint32>(); | 
						|
		Error += run<glm::uint64>(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace prevPowerOfTwo | 
						|
 | 
						|
namespace nextPowerOfTwo | 
						|
{ | 
						|
	template <typename T> | 
						|
	int run() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		T const A = glm::nextPowerOfTwo(static_cast<T>(7)); | 
						|
		Error += A == static_cast<T>(8) ? 0 : 1; | 
						|
 | 
						|
		T const B = glm::nextPowerOfTwo(static_cast<T>(15)); | 
						|
		Error += B == static_cast<T>(16) ? 0 : 1; | 
						|
 | 
						|
		T const C = glm::nextPowerOfTwo(static_cast<T>(31)); | 
						|
		Error += C == static_cast<T>(32) ? 0 : 1; | 
						|
 | 
						|
		T const D = glm::nextPowerOfTwo(static_cast<T>(32)); | 
						|
		Error += D == static_cast<T>(32) ? 0 : 1; | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += run<glm::int8>(); | 
						|
		Error += run<glm::int16>(); | 
						|
		Error += run<glm::int32>(); | 
						|
		Error += run<glm::int64>(); | 
						|
 | 
						|
		Error += run<glm::uint8>(); | 
						|
		Error += run<glm::uint16>(); | 
						|
		Error += run<glm::uint32>(); | 
						|
		Error += run<glm::uint64>(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace nextPowerOfTwo | 
						|
 | 
						|
namespace prevMultiple | 
						|
{ | 
						|
	template<typename genIUType> | 
						|
	struct type | 
						|
	{ | 
						|
		genIUType Source; | 
						|
		genIUType Multiple; | 
						|
		genIUType Return; | 
						|
	}; | 
						|
 | 
						|
	template <typename T> | 
						|
	int run() | 
						|
	{ | 
						|
		type<T> const Data[] = | 
						|
		{ | 
						|
			{8, 3, 6}, | 
						|
			{7, 7, 7} | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
		 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | 
						|
		{ | 
						|
			T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += run<glm::int8>(); | 
						|
		Error += run<glm::int16>(); | 
						|
		Error += run<glm::int32>(); | 
						|
		Error += run<glm::int64>(); | 
						|
 | 
						|
		Error += run<glm::uint8>(); | 
						|
		Error += run<glm::uint16>(); | 
						|
		Error += run<glm::uint32>(); | 
						|
		Error += run<glm::uint64>(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace prevMultiple | 
						|
 | 
						|
namespace nextMultiple | 
						|
{ | 
						|
	static glm::uint const Multiples = 128; | 
						|
 | 
						|
	int perf_nextMultiple(glm::uint Samples) | 
						|
	{ | 
						|
		std::vector<glm::uint> Results(Samples * Multiples); | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		for(glm::uint Source = 0; Source < Samples; ++Source) | 
						|
		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | 
						|
		{ | 
						|
			Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples); | 
						|
		} | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | 
						|
 | 
						|
		glm::uint Result = 0; | 
						|
		for(std::size_t i = 0, n = Results.size(); i < n; ++i) | 
						|
			Result += Results[i]; | 
						|
 | 
						|
		return Result > 0 ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	template <typename T> | 
						|
	GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple) | 
						|
	{ | 
						|
		T const Tmp = Source - static_cast<T>(1); | 
						|
		return Tmp + (Multiple - (Tmp % Multiple)); | 
						|
	} | 
						|
 | 
						|
	int perf_nextMultipleMod(glm::uint Samples) | 
						|
	{ | 
						|
		std::vector<glm::uint> Results(Samples * Multiples); | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | 
						|
			for (glm::uint Source = 0; Source < Samples; ++Source) | 
						|
		{ | 
						|
			Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples); | 
						|
		} | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | 
						|
 | 
						|
		glm::uint Result = 0; | 
						|
		for(std::size_t i = 0, n = Results.size(); i < n; ++i) | 
						|
			Result += Results[i]; | 
						|
 | 
						|
		return Result > 0 ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	template <typename T> | 
						|
	GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple) | 
						|
	{ | 
						|
		if(Source > static_cast<T>(0)) | 
						|
		{ | 
						|
			T const Tmp = Source - static_cast<T>(1); | 
						|
			return Tmp + (Multiple - (Tmp % Multiple)); | 
						|
		} | 
						|
		else | 
						|
			return Source + (-Source % Multiple); | 
						|
	} | 
						|
 | 
						|
	int perf_nextMultipleNeg(glm::uint Samples) | 
						|
	{ | 
						|
		std::vector<glm::uint> Results(Samples * Multiples); | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		for(glm::uint Source = 0; Source < Samples; ++Source) | 
						|
		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | 
						|
		{ | 
						|
			Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples); | 
						|
		} | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | 
						|
 | 
						|
		glm::uint Result = 0; | 
						|
		for (std::size_t i = 0, n = Results.size(); i < n; ++i) | 
						|
			Result += Results[i]; | 
						|
 | 
						|
		return Result > 0 ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	template <typename T> | 
						|
	GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple) | 
						|
	{ | 
						|
		return Source + (Multiple - std::fmod(Source, Multiple)); | 
						|
	} | 
						|
 | 
						|
	int perf_nextMultipleUFloat(glm::uint Samples) | 
						|
	{ | 
						|
		std::vector<float> Results(Samples * Multiples); | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		for(glm::uint Source = 0; Source < Samples; ++Source) | 
						|
		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | 
						|
		{ | 
						|
			Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples)); | 
						|
		} | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | 
						|
 | 
						|
		float Result = 0; | 
						|
		for (std::size_t i = 0, n = Results.size(); i < n; ++i) | 
						|
			Result += Results[i]; | 
						|
 | 
						|
		return Result > 0.0f ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	template <typename T> | 
						|
	GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple) | 
						|
	{ | 
						|
		if(Source > static_cast<float>(0)) | 
						|
			return Source + (Multiple - std::fmod(Source, Multiple)); | 
						|
		else | 
						|
			return Source + std::fmod(-Source, Multiple); | 
						|
	} | 
						|
 | 
						|
	int perf_nextMultipleFloat(glm::uint Samples) | 
						|
	{ | 
						|
		std::vector<float> Results(Samples * Multiples); | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		for(glm::uint Source = 0; Source < Samples; ++Source) | 
						|
		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | 
						|
		{ | 
						|
			Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples)); | 
						|
		} | 
						|
 | 
						|
		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | 
						|
 | 
						|
		std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | 
						|
 | 
						|
		float Result = 0; | 
						|
		for (std::size_t i = 0, n = Results.size(); i < n; ++i) | 
						|
			Result += Results[i]; | 
						|
 | 
						|
		return Result > 0.0f ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	template<typename genIUType> | 
						|
	struct type | 
						|
	{ | 
						|
		genIUType Source; | 
						|
		genIUType Multiple; | 
						|
		genIUType Return; | 
						|
	}; | 
						|
 | 
						|
	template <typename T> | 
						|
	int test_uint() | 
						|
	{ | 
						|
		type<T> const Data[] = | 
						|
		{ | 
						|
			{ 3, 4, 4 }, | 
						|
			{ 6, 3, 6 }, | 
						|
			{ 5, 3, 6 }, | 
						|
			{ 7, 7, 7 }, | 
						|
			{ 0, 1, 0 }, | 
						|
			{ 8, 3, 9 } | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | 
						|
		{ | 
						|
			T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
			assert(!Error); | 
						|
 | 
						|
			T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple); | 
						|
			Error += Data[i].Return == Result1 ? 0 : 1; | 
						|
			assert(!Error); | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		glm::uint const Samples = 10000; | 
						|
 | 
						|
		for(int i = 0; i < 4; ++i) | 
						|
		{ | 
						|
			std::printf("Run %d :\n", i); | 
						|
			Error += perf_nextMultiple(Samples); | 
						|
			Error += perf_nextMultipleMod(Samples); | 
						|
			Error += perf_nextMultipleNeg(Samples); | 
						|
			Error += perf_nextMultipleUFloat(Samples); | 
						|
			Error += perf_nextMultipleFloat(Samples); | 
						|
			std::printf("\n"); | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += test_uint<glm::int8>(); | 
						|
		Error += test_uint<glm::int16>(); | 
						|
		Error += test_uint<glm::int32>(); | 
						|
		Error += test_uint<glm::int64>(); | 
						|
 | 
						|
		Error += test_uint<glm::uint8>(); | 
						|
		Error += test_uint<glm::uint16>(); | 
						|
		Error += test_uint<glm::uint32>(); | 
						|
		Error += test_uint<glm::uint64>(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace nextMultiple | 
						|
 | 
						|
namespace findNSB | 
						|
{ | 
						|
	template<typename T> | 
						|
	struct type | 
						|
	{ | 
						|
		T Source; | 
						|
		int SignificantBitCount; | 
						|
		int Return; | 
						|
	}; | 
						|
 | 
						|
	template <typename T> | 
						|
	int run() | 
						|
	{ | 
						|
		type<T> const Data[] = | 
						|
		{ | 
						|
			{ 0x00, 1,-1 }, | 
						|
			{ 0x01, 2,-1 }, | 
						|
			{ 0x02, 2,-1 }, | 
						|
			{ 0x06, 3,-1 }, | 
						|
			{ 0x01, 1, 0 }, | 
						|
			{ 0x03, 1, 0 }, | 
						|
			{ 0x03, 2, 1 }, | 
						|
			{ 0x07, 2, 1 }, | 
						|
			{ 0x05, 2, 2 }, | 
						|
			{ 0x0D, 2, 2 } | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
 | 
						|
		for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | 
						|
		{ | 
						|
			int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
			assert(!Error); | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += run<glm::uint8>(); | 
						|
		Error += run<glm::uint16>(); | 
						|
		Error += run<glm::uint32>(); | 
						|
		Error += run<glm::uint64>(); | 
						|
 | 
						|
		Error += run<glm::int8>(); | 
						|
		Error += run<glm::int16>(); | 
						|
		Error += run<glm::int32>(); | 
						|
		Error += run<glm::int64>(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace findNSB | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	int Error = 0; | 
						|
 | 
						|
	Error += findNSB::test(); | 
						|
 | 
						|
	Error += isPowerOfTwo::test(); | 
						|
	Error += prevPowerOfTwo::test(); | 
						|
	Error += nextPowerOfTwo::test(); | 
						|
	Error += nextPowerOfTwo_advanced::test(); | 
						|
	Error += prevMultiple::test(); | 
						|
	Error += nextMultiple::test(); | 
						|
 | 
						|
#	ifdef NDEBUG | 
						|
		Error += nextPowerOfTwo_advanced::perf(); | 
						|
		Error += nextMultiple::perf(); | 
						|
#	endif//NDEBUG | 
						|
 | 
						|
	return Error; | 
						|
} | 
						|
 | 
						|
#else | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
#endif
 | 
						|
 |