You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							105 lines
						
					
					
						
							3.1 KiB
						
					
					
				
			
		
		
	
	
							105 lines
						
					
					
						
							3.1 KiB
						
					
					
				| #define GLM_ENABLE_EXPERIMENTAL | |
| #include <glm/gtx/matrix_factorisation.hpp> | |
| #include <glm/gtc/constants.hpp> | |
| #include <glm/gtc/epsilon.hpp> | |
|  | |
| template <glm::length_t C, glm::length_t R, typename T, glm::qualifier Q> | |
| int test_qr(glm::mat<C, R, T, Q> m) | |
| { | |
| 	int Error = 0; | |
| 
 | |
| 	T const epsilon = static_cast<T>(1e-10); | |
| 
 | |
| 	glm::mat<(C < R ? C : R), R, T, Q> q(-999); | |
| 	glm::mat<C, (C < R ? C : R), T, Q> r(-999); | |
| 
 | |
| 	glm::qr_decompose(m, q, r); | |
| 
 | |
| 	//Test if q*r really equals the input matrix | |
| 	glm::mat<C, R, T, Q> tm = q*r; | |
| 	glm::mat<C, R, T, Q> err = tm - m; | |
| 
 | |
| 	for (glm::length_t i = 0; i < C; i++) | |
| 	for (glm::length_t j = 0; j < R; j++) | |
| 		Error += glm::abs(err[i][j]) > epsilon ? 1 : 0; | |
| 
 | |
| 	//Test if the columns of q are orthonormal | |
| 	for (glm::length_t i = 0; i < (C < R ? C : R); i++) | |
| 	{ | |
| 		Error += (length(q[i]) - 1) > epsilon ? 1 : 0; | |
| 
 | |
| 		for (glm::length_t j = 0; j<i; j++) | |
| 			Error += glm::abs(dot(q[i], q[j])) > epsilon ? 1 : 0; | |
| 	} | |
| 
 | |
| 	//Test if the matrix r is upper triangular | |
| 	for (glm::length_t i = 0; i < C; i++) | |
| 	for (glm::length_t j = i + 1; j < (C < R ? C : R); j++) | |
| 		Error += glm::epsilonEqual(r[i][j], static_cast<T>(0), glm::epsilon<T>()) ? 0 : 1; | |
| 
 | |
| 	return Error; | |
| } | |
| 
 | |
| template <glm::length_t C, glm::length_t R, typename T, glm::qualifier Q> | |
| int test_rq(glm::mat<C, R, T, Q> m) | |
| { | |
| 	int Error = 0; | |
| 
 | |
| 	T const epsilon = static_cast<T>(1e-10); | |
| 
 | |
| 	glm::mat<C, (C < R ? C : R), T, Q> q(-999); | |
| 	glm::mat<(C < R ? C : R), R, T, Q> r(-999); | |
| 
 | |
| 	glm::rq_decompose(m, r, q); | |
| 
 | |
| 	//Test if q*r really equals the input matrix | |
| 	glm::mat<C, R, T, Q> tm = r*q; | |
| 	glm::mat<C, R, T, Q> err = tm - m; | |
| 
 | |
| 	for (glm::length_t i = 0; i < C; i++) | |
| 	for (glm::length_t j = 0; j < R; j++) | |
| 		Error += glm::abs(err[i][j]) > epsilon ? 1 : 0; | |
| 
 | |
| 	//Test if the rows of q are orthonormal | |
| 	glm::mat<(C < R ? C : R), C, T, Q> tq = transpose(q); | |
| 
 | |
| 	for (glm::length_t i = 0; i < (C < R ? C : R); i++) | |
| 	{ | |
| 		Error += (length(tq[i]) - 1) > epsilon ? 1 : 0; | |
| 
 | |
| 		for (glm::length_t j = 0; j<i; j++) | |
| 			Error += glm::abs(dot(tq[i], tq[j])) > epsilon ? 1 : 0; | |
| 	} | |
| 
 | |
| 	//Test if the matrix r is upper triangular | |
| 	for (glm::length_t i = 0; i < (C < R ? C : R); i++) | |
| 	for (glm::length_t j = R - (C < R ? C : R) + i + 1; j < R; j++) | |
| 		Error += glm::epsilonEqual(r[i][j], static_cast<T>(0), glm::epsilon<T>()) ? 0 : 1; | |
| 
 | |
| 	return Error; | |
| } | |
| 
 | |
| int main() | |
| { | |
| 	int Error = 0; | |
| 
 | |
| 	//Test QR square | |
| 	Error += test_qr(glm::dmat3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0)) ? 1 : 0; | |
| 
 | |
| 	//Test RQ square | |
| 	Error += test_rq(glm::dmat3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0)) ? 1 : 0; | |
| 
 | |
| 	//Test QR triangular 1 | |
| 	Error += test_qr(glm::dmat3x4(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0; | |
| 
 | |
| 	//Test QR triangular 2 | |
| 	Error += test_qr(glm::dmat4x3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0; | |
| 
 | |
| 	//Test RQ triangular 1 : Fails at the triangular test | |
| 	Error += test_rq(glm::dmat3x4(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0; | |
| 
 | |
| 	//Test QR triangular 2 | |
| 	Error += test_rq(glm::dmat4x3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0; | |
| 
 | |
| 	return Error; | |
| }
 | |
| 
 |