You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
642 lines
17 KiB
642 lines
17 KiB
#include <glm/gtc/bitfield.hpp> |
|
#include <glm/gtc/type_precision.hpp> |
|
#include <glm/vector_relational.hpp> |
|
#include <glm/integer.hpp> |
|
#include <ctime> |
|
#include <cstdio> |
|
#include <vector> |
|
|
|
namespace mask |
|
{ |
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
inline int mask_zero(int Bits) |
|
{ |
|
return ~((~0) << Bits); |
|
} |
|
|
|
inline int mask_mix(int Bits) |
|
{ |
|
return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1); |
|
} |
|
|
|
inline int mask_half(int Bits) |
|
{ |
|
// We do the shift in two steps because 1 << 32 on an int is undefined. |
|
|
|
int const Half = Bits >> 1; |
|
int const Fill = ~0; |
|
int const ShiftHaft = (Fill << Half); |
|
int const Rest = Bits - Half; |
|
int const Reversed = ShiftHaft << Rest; |
|
|
|
return ~Reversed; |
|
} |
|
|
|
inline int mask_loop(int Bits) |
|
{ |
|
int Mask = 0; |
|
for(int Bit = 0; Bit < Bits; ++Bit) |
|
Mask |= (static_cast<int>(1) << Bit); |
|
return Mask; |
|
} |
|
|
|
int perf() |
|
{ |
|
int const Count = 100000000; |
|
|
|
std::clock_t Timestamp1 = std::clock(); |
|
|
|
{ |
|
std::vector<int> Mask; |
|
Mask.resize(Count); |
|
for(int i = 0; i < Count; ++i) |
|
Mask[i] = mask_mix(i % 32); |
|
} |
|
|
|
std::clock_t Timestamp2 = std::clock(); |
|
|
|
{ |
|
std::vector<int> Mask; |
|
Mask.resize(Count); |
|
for(int i = 0; i < Count; ++i) |
|
Mask[i] = mask_loop(i % 32); |
|
} |
|
|
|
std::clock_t Timestamp3 = std::clock(); |
|
|
|
{ |
|
std::vector<int> Mask; |
|
Mask.resize(Count); |
|
for(int i = 0; i < Count; ++i) |
|
Mask[i] = glm::mask(i % 32); |
|
} |
|
|
|
std::clock_t Timestamp4 = std::clock(); |
|
|
|
{ |
|
std::vector<int> Mask; |
|
Mask.resize(Count); |
|
for(int i = 0; i < Count; ++i) |
|
Mask[i] = mask_zero(i % 32); |
|
} |
|
|
|
std::clock_t Timestamp5 = std::clock(); |
|
|
|
{ |
|
std::vector<int> Mask; |
|
Mask.resize(Count); |
|
for(int i = 0; i < Count; ++i) |
|
Mask[i] = mask_half(i % 32); |
|
} |
|
|
|
std::clock_t Timestamp6 = std::clock(); |
|
|
|
std::clock_t TimeMix = Timestamp2 - Timestamp1; |
|
std::clock_t TimeLoop = Timestamp3 - Timestamp2; |
|
std::clock_t TimeDefault = Timestamp4 - Timestamp3; |
|
std::clock_t TimeZero = Timestamp5 - Timestamp4; |
|
std::clock_t TimeHalf = Timestamp6 - Timestamp5; |
|
|
|
printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix)); |
|
printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop)); |
|
printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault)); |
|
printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero)); |
|
printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf)); |
|
|
|
return TimeDefault < TimeLoop ? 0 : 1; |
|
} |
|
|
|
int test_uint() |
|
{ |
|
type<glm::uint> const Data[] = |
|
{ |
|
{ 0, 0x00000000}, |
|
{ 1, 0x00000001}, |
|
{ 2, 0x00000003}, |
|
{ 3, 0x00000007}, |
|
{31, 0x7fffffff}, |
|
{32, 0xffffffff} |
|
}; |
|
|
|
int Error(0); |
|
/* mask_zero is sadly not a correct code |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = mask_zero(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
*/ |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = mask_mix(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = mask_half(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = mask_loop(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
|
{ |
|
int Result = glm::mask(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uvec4() |
|
{ |
|
type<glm::ivec4> const Data[] = |
|
{ |
|
{glm::ivec4( 0), glm::ivec4(0x00000000)}, |
|
{glm::ivec4( 1), glm::ivec4(0x00000001)}, |
|
{glm::ivec4( 2), glm::ivec4(0x00000003)}, |
|
{glm::ivec4( 3), glm::ivec4(0x00000007)}, |
|
{glm::ivec4(31), glm::ivec4(0x7fffffff)}, |
|
{glm::ivec4(32), glm::ivec4(0xffffffff)} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i) |
|
{ |
|
glm::ivec4 Result = glm::mask(Data[i].Value); |
|
Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_uint(); |
|
Error += test_uvec4(); |
|
|
|
return Error; |
|
} |
|
}//namespace mask |
|
|
|
namespace bitfieldInterleave3 |
|
{ |
|
template <typename PARAM, typename RET> |
|
inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) |
|
{ |
|
RET Result = 0; |
|
for(RET i = 0; i < sizeof(PARAM) * 8; ++i) |
|
{ |
|
Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); |
|
Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); |
|
Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); |
|
} |
|
return Result; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
glm::uint16 x_max = 1 << 11; |
|
glm::uint16 y_max = 1 << 11; |
|
glm::uint16 z_max = 1 << 11; |
|
|
|
for(glm::uint16 z = 0; z < z_max; z += 27) |
|
for(glm::uint16 y = 0; y < y_max; y += 27) |
|
for(glm::uint16 x = 0; x < x_max; x += 27) |
|
{ |
|
glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); |
|
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); |
|
Error += ResultA == ResultB ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace bitfieldInterleave4 |
|
{ |
|
template <typename PARAM, typename RET> |
|
inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) |
|
{ |
|
RET const v[4] = {x, y, z, w}; |
|
RET Result = 0; |
|
for(RET i = 0; i < sizeof(PARAM) * 8; i++) |
|
{ |
|
Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); |
|
Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); |
|
Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); |
|
Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); |
|
} |
|
return Result; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
glm::uint16 x_max = 1 << 11; |
|
glm::uint16 y_max = 1 << 11; |
|
glm::uint16 z_max = 1 << 11; |
|
glm::uint16 w_max = 1 << 11; |
|
|
|
for(glm::uint16 w = 0; w < w_max; w += 27) |
|
for(glm::uint16 z = 0; z < z_max; z += 27) |
|
for(glm::uint16 y = 0; y < y_max; y += 27) |
|
for(glm::uint16 x = 0; x < x_max; x += 27) |
|
{ |
|
glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); |
|
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); |
|
Error += ResultA == ResultB ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace bitfieldInterleave |
|
{ |
|
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1; |
|
glm::uint64 REG2; |
|
|
|
REG1 = x; |
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
|
|
REG2 = y; |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1; |
|
glm::uint64 REG2; |
|
|
|
REG1 = x; |
|
REG2 = y; |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
static glm::uint64 const Mask[5] = |
|
{ |
|
0x5555555555555555, |
|
0x3333333333333333, |
|
0x0F0F0F0F0F0F0F0F, |
|
0x00FF00FF00FF00FF, |
|
0x0000FFFF0000FFFF |
|
}; |
|
|
|
glm::uint64 REG1 = x; |
|
glm::uint64 REG2 = y; |
|
for(int i = 4; i >= 0; --i) |
|
{ |
|
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; |
|
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; |
|
} |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
#if(GLM_ARCH != GLM_ARCH_PURE) |
|
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_load_si128((__m128i*)Array); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
GLM_ALIGN(16) glm::uint64 Result[2]; |
|
_mm_store_si128((__m128i*)Result, Reg1); |
|
|
|
return Result[0]; |
|
} |
|
|
|
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_loadu_si128((__m128i*)Array); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
glm::uint64 Result[2]; |
|
_mm_storeu_si128((__m128i*)Result, Reg1); |
|
|
|
return Result[0]; |
|
} |
|
#endif//(GLM_ARCH != GLM_ARCH_PURE) |
|
|
|
int test() |
|
{ |
|
{ |
|
for(glm::uint32 y = 0; y < (1 << 10); ++y) |
|
for(glm::uint32 x = 0; x < (1 << 10); ++x) |
|
{ |
|
glm::uint64 A = glm::bitfieldInterleave(x, y); |
|
glm::uint64 B = fastBitfieldInterleave(x, y); |
|
glm::uint64 C = loopBitfieldInterleave(x, y); |
|
glm::uint64 D = interleaveBitfieldInterleave(x, y); |
|
|
|
assert(A == B); |
|
assert(A == C); |
|
assert(A == D); |
|
|
|
# if GLM_ARCH & GLM_ARCH_SSE2_BIT |
|
glm::uint64 E = sseBitfieldInterleave(x, y); |
|
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); |
|
assert(A == E); |
|
assert(A == F); |
|
|
|
__m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x)); |
|
glm::uint64 Result[2]; |
|
_mm_storeu_si128((__m128i*)Result, G); |
|
assert(A == Result[0]); |
|
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT |
|
} |
|
} |
|
|
|
{ |
|
for(glm::uint8 y = 0; y < 127; ++y) |
|
for(glm::uint8 x = 0; x < 127; ++x) |
|
{ |
|
glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y))); |
|
glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y))); |
|
glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y))); |
|
|
|
glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); |
|
glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); |
|
glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); |
|
|
|
assert(D == E); |
|
assert(D == F); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int perf() |
|
{ |
|
glm::uint32 x_max = 1 << 11; |
|
glm::uint32 y_max = 1 << 10; |
|
|
|
// ALU |
|
std::vector<glm::uint64> Data(x_max * y_max); |
|
std::vector<glm::u32vec2> Param(x_max * y_max); |
|
for(glm::uint32 i = 0; i < Param.size(); ++i) |
|
Param[i] = glm::u32vec2(i % x_max, i / y_max); |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
|
|
# if(GLM_ARCH != GLM_ARCH_PURE) |
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
# endif//(GLM_ARCH != GLM_ARCH_PURE) |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
|
|
# if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC)) |
|
{ |
|
// SIMD |
|
std::vector<__m128i> SimdData; |
|
SimdData.resize(x_max * y_max); |
|
std::vector<__m128i> SimdParam; |
|
SimdParam.resize(x_max * y_max); |
|
for(int i = 0; i < SimdParam.size(); ++i) |
|
SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0); |
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < SimdData.size(); ++i) |
|
SimdData[i] = glm_i128_interleave(SimdParam[i]); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<unsigned int>(Time)); |
|
} |
|
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT |
|
|
|
return 0; |
|
} |
|
}//namespace bitfieldInterleave |
|
|
|
int main() |
|
{ |
|
int Error(0); |
|
|
|
Error += ::mask::test(); |
|
Error += ::bitfieldInterleave3::test(); |
|
Error += ::bitfieldInterleave4::test(); |
|
Error += ::bitfieldInterleave::test(); |
|
//Error += ::bitRevert::test(); |
|
|
|
# ifdef NDEBUG |
|
Error += ::mask::perf(); |
|
Error += ::bitfieldInterleave::perf(); |
|
# endif//NDEBUG |
|
|
|
return Error; |
|
}
|
|
|