OpenGL Mathematics (GLM)
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
 
 
 

964 lines
20 KiB

///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2011-05-03
// Updated : 2011-05-03
// Licence : This source is under MIT licence
// File : test/core/func_integer.cpp
///////////////////////////////////////////////////////////////////////////////////////////////////
#include <glm/integer.hpp>
#include <glm/gtc/vec1.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
enum result
{
SUCCESS,
FAIL,
ASSERT,
STATIC_ASSERT
};
namespace bitfieldInsert
{
template <typename genType, typename sizeType>
struct type
{
genType Base;
genType Insert;
sizeType Offset;
sizeType Bits;
genType Return;
};
typedef type<glm::uint, glm::uint> typeU32;
typeU32 const Data32[] =
{
{0x00000000, 0xffffffff, 0, 31, 0x7fffffff},
{0x00000000, 0xffffffff, 0, 32, 0xffffffff},
{0x00000000, 0xffffffff, 0, 0, 0x00000000},
{0xff000000, 0x0000ff00, 8, 8, 0xff00ff00},
{0xffff0000, 0x0000ffff, 16, 16, 0x00000000},
{0x0000ffff, 0xffff0000, 16, 16, 0xffffffff}
};
int test()
{
int Error = 0;
glm::uint count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint i = 0; i < count; ++i)
{
glm::uint Return = glm::bitfieldInsert(
Data32[i].Base,
Data32[i].Insert,
Data32[i].Offset,
Data32[i].Bits);
Error += Data32[i].Return == Return ? 0 : 1;
}
return Error;
}
}//bitfieldInsert
namespace bitfieldExtract
{
template <typename genType, typename sizeType>
struct type
{
genType Value;
sizeType Offset;
sizeType Bits;
genType Return;
result Result;
};
typedef type<glm::uint, glm::uint> typeU32;
typeU32 const Data32[] =
{
{0xffffffff, 0,32, 0xffffffff, SUCCESS},
{0xffffffff, 8, 0, 0x00000000, SUCCESS},
{0x00000000, 0,32, 0x00000000, SUCCESS},
{0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS},
{0x00000000, 8, 0, 0x00000000, SUCCESS},
{0x80000000,31, 1, 0x00000001, SUCCESS},
{0x7fffffff,31, 1, 0x00000000, SUCCESS},
{0x00000300, 8, 8, 0x00000003, SUCCESS},
{0x0000ff00, 8, 8, 0x000000ff, SUCCESS},
{0xfffffff0, 0, 5, 0x00000010, SUCCESS},
{0x000000ff, 1, 3, 0x00000007, SUCCESS},
{0x000000ff, 0, 3, 0x00000007, SUCCESS},
{0x00000000, 0, 2, 0x00000000, SUCCESS},
{0xffffffff, 0, 8, 0x000000ff, SUCCESS},
{0xffff0000,16,16, 0x0000ffff, SUCCESS},
{0xfffffff0, 0, 8, 0x00000000, FAIL},
{0xffffffff,16,16, 0x00000000, FAIL},
//{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert
//{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert
//{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert
};
int test()
{
int Error = 0;
glm::uint count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint i = 0; i < count; ++i)
{
glm::uint Return = glm::bitfieldExtract(
Data32[i].Value,
Data32[i].Offset,
Data32[i].Bits);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS && Compare)
continue;
else if(Data32[i].Result == FAIL && !Compare)
continue;
Error += 1;
}
return Error;
}
}//extractField
namespace bitfieldReverse
{
template <typename genType>
struct type
{
genType Value;
genType Return;
result Result;
};
typedef type<glm::uint> typeU32;
typeU32 const Data32[] =
{
{0xffffffff, 0xffffffff, SUCCESS},
{0x00000000, 0x00000000, SUCCESS},
{0xf0000000, 0x0000000f, SUCCESS},
};
typedef type<glm::uint64> typeU64;
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44))
typeU64 const Data64[] =
{
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS},
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS},
{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS},
};
#else
typeU64 const Data64[] =
{
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS},
{0x0000000000000000, 0x0000000000000000, SUCCESS},
{0xf000000000000000, 0x000000000000000f, SUCCESS},
};
#endif
int test32()
{
glm::uint count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint i = 0; i < count; ++i)
{
glm::uint Return = glm::bitfieldReverse(
Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS && Compare)
continue;
else if(Data32[i].Result == FAIL && !Compare)
continue;
std::printf("glm::bitfieldReverse test fail on test %d\n", static_cast<unsigned int>(i));
return 1;
}
return 0;
}
int test64()
{
glm::uint32 count = sizeof(Data64) / sizeof(typeU64);
for(glm::uint32 i = 0; i < count; ++i)
{
glm::uint64 Return = glm::bitfieldReverse(
Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS && Compare)
continue;
else if(Data64[i].Result == FAIL && !Compare)
continue;
std::printf("glm::extractfield test fail on test %d\n", static_cast<unsigned int>(i));
return 1;
}
return 0;
}
int test()
{
int Error = 0;
Error += test32();
Error += test64();
return Error;
}
}//bitfieldReverse
namespace findMSB
{
template <typename genType>
struct type
{
genType Value;
genType Return;
};
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB_095(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == genIUType(0) || Value == genIUType(-1))
return -1;
else if(Value > 0)
{
genIUType Bit = genIUType(-1);
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){}
return Bit;
}
else //if(Value < 0)
{
int const BitCount(sizeof(genIUType) * 8);
int MostSignificantBit(-1);
for(int BitIndex(0); BitIndex < BitCount; ++BitIndex)
MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex;
assert(MostSignificantBit >= 0);
return MostSignificantBit;
}
}
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB_nlz1(genIUType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
/*
int Result = 0;
for(std::size_t i = 0, n = sizeof(genIUType) * 8; i < n; ++i)
Result = Value & static_cast<genIUType>(1 << i) ? static_cast<int>(i) : Result;
return Result;
*/
/*
genIUType Bit = genIUType(-1);
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){}
return Bit;
*/
int n;
if (x == 0) return(32);
n = 0;
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
if (x <= 0x7FFFFFFF) {n = n + 1;}
return n;
}
int findMSB_nlz2(unsigned int x)
{
unsigned y;
int n;
n = 32;
y = x >>16; if (y != 0) {n = n -16; x = y;}
y = x >> 8; if (y != 0) {n = n - 8; x = y;}
y = x >> 4; if (y != 0) {n = n - 4; x = y;}
y = x >> 2; if (y != 0) {n = n - 2; x = y;}
y = x >> 1; if (y != 0) return n - 2;
return n - x;
}
int perf_950()
{
type<glm::uint> const Data[] =
{
//{0x00000000, -1},
{0x00000001, 0},
{0x00000002, 1},
{0x00000003, 1},
{0x00000004, 2},
{0x00000005, 2},
{0x00000007, 2},
{0x00000008, 3},
{0x00000010, 4},
{0x00000020, 5},
{0x00000040, 6},
{0x00000080, 7},
{0x00000100, 8},
{0x00000200, 9},
{0x00000400, 10},
{0x00000800, 11},
{0x00001000, 12},
{0x00002000, 13},
{0x00004000, 14},
{0x00008000, 15},
{0x00010000, 16},
{0x00020000, 17},
{0x00040000, 18},
{0x00080000, 19},
{0x00100000, 20},
{0x00200000, 21},
{0x00400000, 22},
{0x00800000, 23},
{0x01000000, 24},
{0x02000000, 25},
{0x04000000, 26},
{0x08000000, 27},
{0x10000000, 28},
{0x20000000, 29},
{0x40000000, 30}
};
int Error(0);
std::clock_t Timestamps1 = std::clock();
for(std::size_t k = 0; k < 1000000; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = findMSB_095(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps2 = std::clock();
std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
return Error;
}
int perf_ops()
{
type<int> const Data[] =
{
{0x00000000, -1},
{0x00000001, 0},
{0x00000002, 1},
{0x00000003, 1},
{0x00000004, 2},
{0x00000005, 2},
{0x00000007, 2},
{0x00000008, 3},
{0x00000010, 4},
{0x00000020, 5},
{0x00000040, 6},
{0x00000080, 7},
{0x00000100, 8},
{0x00000200, 9},
{0x00000400, 10},
{0x00000800, 11},
{0x00001000, 12},
{0x00002000, 13},
{0x00004000, 14},
{0x00008000, 15},
{0x00010000, 16},
{0x00020000, 17},
{0x00040000, 18},
{0x00080000, 19},
{0x00100000, 20},
{0x00200000, 21},
{0x00400000, 22},
{0x00800000, 23},
{0x01000000, 24},
{0x02000000, 25},
{0x04000000, 26},
{0x08000000, 27},
{0x10000000, 28},
{0x20000000, 29},
{0x40000000, 30}
};
int Error(0);
std::clock_t Timestamps1 = std::clock();
for(std::size_t k = 0; k < 1000000; ++k)
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = findMSB_nlz1(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
std::clock_t Timestamps2 = std::clock();
std::printf("findMSB - nlz1: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
return Error;
}
int test_findMSB()
{
type<glm::uint> const Data[] =
{
//{0x00000000, -1},
{0x00000001, 0},
{0x00000002, 1},
{0x00000003, 1},
{0x00000004, 2},
{0x00000005, 2},
{0x00000007, 2},
{0x00000008, 3},
{0x00000010, 4},
{0x00000020, 5},
{0x00000040, 6},
{0x00000080, 7},
{0x00000100, 8},
{0x00000200, 9},
{0x00000400, 10},
{0x00000800, 11},
{0x00001000, 12},
{0x00002000, 13},
{0x00004000, 14},
{0x00008000, 15},
{0x00010000, 16},
{0x00020000, 17},
{0x00040000, 18},
{0x00080000, 19},
{0x00100000, 20},
{0x00200000, 21},
{0x00400000, 22},
{0x00800000, 23},
{0x01000000, 24},
{0x02000000, 25},
{0x04000000, 26},
{0x08000000, 27},
{0x10000000, 28},
{0x20000000, 29},
{0x40000000, 30}
};
int Error(0);
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = glm::findMSB(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
assert(!Error);
}
return Error;
}
int test_nlz1()
{
type<glm::uint> const Data[] =
{
//{0x00000000, -1},
{0x00000001, 0},
{0x00000002, 1},
{0x00000003, 1},
{0x00000004, 2},
{0x00000005, 2},
{0x00000007, 2},
{0x00000008, 3},
{0x00000010, 4},
{0x00000020, 5},
{0x00000040, 6},
{0x00000080, 7},
{0x00000100, 8},
{0x00000200, 9},
{0x00000400, 10},
{0x00000800, 11},
{0x00001000, 12},
{0x00002000, 13},
{0x00004000, 14},
{0x00008000, 15},
{0x00010000, 16},
{0x00020000, 17},
{0x00040000, 18},
{0x00080000, 19},
{0x00100000, 20},
{0x00200000, 21},
{0x00400000, 22},
{0x00800000, 23},
{0x01000000, 24},
{0x02000000, 25},
{0x04000000, 26},
{0x08000000, 27},
{0x10000000, 28},
{0x20000000, 29},
{0x40000000, 30}
};
int Error(0);
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = findMSB_nlz2(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error(0);
Error += test_findMSB();
//Error += test_nlz1();
return Error;
}
int perf()
{
int Error(0);
Error += perf_950();
//Error += perf_ops();
return Error;
}
}//findMSB
namespace findLSB
{
template <typename genType>
struct type
{
genType Value;
genType Return;
};
type<int> const DataI32[] =
{
{0x00000001, 0},
{0x00000003, 0},
{0x00000002, 1}
};
int test()
{
int Error(0);
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
{
int Result = glm::findLSB(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
assert(!Error);
}
return Error;
}
}//findLSB
namespace uaddCarry
{
int test()
{
int Error(0);
{
glm::uint x = 16;
glm::uint y = 17;
glm::uint Carry = 0;
glm::uint Result = glm::uaddCarry(x, y, Carry);
Error += Carry == 1 ? 0 : 1;
Error += Result == 33 ? 0 : 1;
}
{
glm::uvec1 x(16);
glm::uvec1 y(17);
glm::uvec1 Carry(0);
glm::uvec1 Result(glm::uaddCarry(x, y, Carry));
Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec1(33))) ? 0 : 1;
}
{
glm::uvec2 x(16);
glm::uvec2 y(17);
glm::uvec2 Carry(0);
glm::uvec2 Result(glm::uaddCarry(x, y, Carry));
Error += glm::all(glm::equal(Carry, glm::uvec2(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec2(33))) ? 0 : 1;
}
{
glm::uvec3 x(16);
glm::uvec3 y(17);
glm::uvec3 Carry(0);
glm::uvec3 Result(glm::uaddCarry(x, y, Carry));
Error += glm::all(glm::equal(Carry, glm::uvec3(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec3(33))) ? 0 : 1;
}
{
glm::uvec4 x(16);
glm::uvec4 y(17);
glm::uvec4 Carry(0);
glm::uvec4 Result(glm::uaddCarry(x, y, Carry));
Error += glm::all(glm::equal(Carry, glm::uvec4(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec4(33))) ? 0 : 1;
}
return Error;
}
}//namespace uaddCarry
namespace usubBorrow
{
int test()
{
int Error(0);
{
glm::uint x = 16;
glm::uint y = 17;
glm::uint Borrow = 0;
glm::uint Result = glm::usubBorrow(x, y, Borrow);
Error += Borrow == 1 ? 0 : 1;
Error += Result == 1 ? 0 : 1;
}
{
glm::uvec1 x(16);
glm::uvec1 y(17);
glm::uvec1 Borrow(0);
glm::uvec1 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1;
}
{
glm::uvec2 x(16);
glm::uvec2 y(17);
glm::uvec2 Borrow(0);
glm::uvec2 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1;
}
{
glm::uvec3 x(16);
glm::uvec3 y(17);
glm::uvec3 Borrow(0);
glm::uvec3 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1;
}
{
glm::uvec4 x(16);
glm::uvec4 y(17);
glm::uvec4 Borrow(0);
glm::uvec4 Result(glm::usubBorrow(x, y, Borrow));
Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1;
Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1;
}
return Error;
}
}//namespace usubBorrow
namespace umulExtended
{
int test()
{
int Error(0);
{
glm::uint x = 2;
glm::uint y = 3;
glm::uint msb = 0;
glm::uint lsb = 0;
glm::umulExtended(x, y, msb, lsb);
Error += msb == 0 ? 0 : 1;
Error += lsb == 6 ? 0 : 1;
}
{
glm::uvec1 x(2);
glm::uvec1 y(3);
glm::uvec1 msb(0);
glm::uvec1 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1;
}
{
glm::uvec2 x(2);
glm::uvec2 y(3);
glm::uvec2 msb(0);
glm::uvec2 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1;
}
{
glm::uvec3 x(2);
glm::uvec3 y(3);
glm::uvec3 msb(0);
glm::uvec3 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1;
}
{
glm::uvec4 x(2);
glm::uvec4 y(3);
glm::uvec4 msb(0);
glm::uvec4 lsb(0);
glm::umulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1;
}
return Error;
}
}//namespace umulExtended
namespace imulExtended
{
int test()
{
int Error(0);
{
int x = 2;
int y = 3;
int msb = 0;
int lsb = 0;
glm::imulExtended(x, y, msb, lsb);
Error += msb == 0 ? 0 : 1;
Error += lsb == 6 ? 0 : 1;
}
{
glm::ivec1 x(2);
glm::ivec1 y(3);
glm::ivec1 msb(0);
glm::ivec1 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1;
}
{
glm::ivec2 x(2);
glm::ivec2 y(3);
glm::ivec2 msb(0);
glm::ivec2 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1;
}
{
glm::ivec3 x(2);
glm::ivec3 y(3);
glm::ivec3 msb(0);
glm::ivec3 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1;
}
{
glm::ivec4 x(2);
glm::ivec4 y(3);
glm::ivec4 msb(0);
glm::ivec4 lsb(0);
glm::imulExtended(x, y, msb, lsb);
Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1;
Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1;
}
return Error;
}
}//namespace imulExtended
namespace bitCount
{
template <typename genType>
struct type
{
genType Value;
genType Return;
};
type<int> const DataI32[] =
{
{0x00000001, 1},
{0x00000003, 2},
{0x00000002, 1},
{0x7fffffff, 31},
{0x00000000, 0}
};
template <typename T>
inline int bitCount_if(T v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values");
int Count(0);
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i)
{
if(v & static_cast<T>(1 << i))
++Count;
}
return Count;
}
template <typename T>
inline int bitCount_vec(T v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values");
int Count(0);
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i)
{
Count += static_cast<int>((v >> i) & static_cast<T>(1));
}
return Count;
}
int perf()
{
int Error(0);
std::size_t Size = 10000000;
std::vector<int> v;
v.resize(Size);
std::vector<glm::ivec4> w;
w.resize(Size);
std::clock_t TimestampsA = std::clock();
// bitCount - TimeIf
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = bitCount_if(i);
}
std::clock_t TimestampsB = std::clock();
// bitCount - TimeVec
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = bitCount_vec(i);
}
std::clock_t TimestampsC = std::clock();
// bitCount - TimeDefault
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
v[i] = glm::bitCount(i);
}
std::clock_t TimestampsD = std::clock();
// bitCount - TimeVec4
{
for(std::size_t i = 0, n = v.size(); i < n; ++i)
w[i] = glm::bitCount(glm::ivec4(i));
}
std::clock_t TimestampsE = std::clock();
std::clock_t TimeIf = TimestampsB - TimestampsA;
std::clock_t TimeVec = TimestampsC - TimestampsB;
std::clock_t TimeDefault = TimestampsD - TimestampsC;
std::clock_t TimeVec4 = TimestampsE - TimestampsD;
std::printf("bitCount - TimeIf %d\n", static_cast<unsigned int>(TimeIf));
std::printf("bitCount - TimeVec %d\n", static_cast<unsigned int>(TimeVec));
std::printf("bitCount - TimeDefault %d\n", static_cast<unsigned int>(TimeDefault));
std::printf("bitCount - TimeVec4 %d\n", static_cast<unsigned int>(TimeVec4));
return Error;
}
int test()
{
int Error(0);
for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type<int>); i < n; ++i)
{
int Result = glm::bitCount(DataI32[i].Value);
Error += DataI32[i].Return == Result ? 0 : 1;
assert(!Error);
}
return Error;
}
}//bitCount
int main()
{
int Error = 0;
Error += ::findMSB::test();
Error += ::findMSB::perf();
Error += ::findLSB::test();
Error += ::umulExtended::test();
Error += ::imulExtended::test();
Error += ::uaddCarry::test();
Error += ::usubBorrow::test();
Error += ::bitfieldInsert::test();
Error += ::bitfieldExtract::test();
Error += ::bitfieldReverse::test();
Error += ::bitCount::test();
Error += ::bitCount::perf();
return Error;
}