You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
233 lines
6.7 KiB
233 lines
6.7 KiB
// (C) Copyright John Maddock 2006. |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
// |
|
// This is not a complete header file, it is included by gamma.hpp |
|
// after it has defined it's definitions. This inverts the incomplete |
|
// gamma functions P and Q on the first parameter "a" using a generic |
|
// root finding algorithm (TOMS Algorithm 748). |
|
// |
|
|
|
#ifndef BOOST_MATH_SP_DETAIL_GAMMA_INVA |
|
#define BOOST_MATH_SP_DETAIL_GAMMA_INVA |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/tools/toms748_solve.hpp> |
|
#include <boost/cstdint.hpp> |
|
|
|
namespace boost{ namespace math{ namespace detail{ |
|
|
|
template <class T, class Policy> |
|
struct gamma_inva_t |
|
{ |
|
gamma_inva_t(T z_, T p_, bool invert_) : z(z_), p(p_), invert(invert_) {} |
|
T operator()(T a) |
|
{ |
|
return invert ? p - boost::math::gamma_q(a, z, Policy()) : boost::math::gamma_p(a, z, Policy()) - p; |
|
} |
|
private: |
|
T z, p; |
|
bool invert; |
|
}; |
|
|
|
template <class T, class Policy> |
|
T inverse_poisson_cornish_fisher(T lambda, T p, T q, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
// mean: |
|
T m = lambda; |
|
// standard deviation: |
|
T sigma = sqrt(lambda); |
|
// skewness |
|
T sk = 1 / sigma; |
|
// kurtosis: |
|
// T k = 1/lambda; |
|
// Get the inverse of a std normal distribution: |
|
T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>(); |
|
// Set the sign: |
|
if(p < 0.5) |
|
x = -x; |
|
T x2 = x * x; |
|
// w is correction term due to skewness |
|
T w = x + sk * (x2 - 1) / 6; |
|
/* |
|
// Add on correction due to kurtosis. |
|
// Disabled for now, seems to make things worse? |
|
// |
|
if(lambda >= 10) |
|
w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36; |
|
*/ |
|
w = m + sigma * w; |
|
return w > tools::min_value<T>() ? w : tools::min_value<T>(); |
|
} |
|
|
|
template <class T, class Policy> |
|
T gamma_inva_imp(const T& z, const T& p, const T& q, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING // for ADL of std lib math functions |
|
// |
|
// Special cases first: |
|
// |
|
if(p == 0) |
|
{ |
|
return tools::max_value<T>(); |
|
} |
|
if(q == 0) |
|
{ |
|
return tools::min_value<T>(); |
|
} |
|
// |
|
// Function object, this is the functor whose root |
|
// we have to solve: |
|
// |
|
gamma_inva_t<T, Policy> f(z, (p < q) ? p : q, (p < q) ? false : true); |
|
// |
|
// Tolerance: full precision. |
|
// |
|
tools::eps_tolerance<T> tol(policies::digits<T, Policy>()); |
|
// |
|
// Now figure out a starting guess for what a may be, |
|
// we'll start out with a value that'll put p or q |
|
// right bang in the middle of their range, the functions |
|
// are quite sensitive so we should need too many steps |
|
// to bracket the root from there: |
|
// |
|
T guess; |
|
T factor = 8; |
|
if(z >= 1) |
|
{ |
|
// |
|
// We can use the relationship between the incomplete |
|
// gamma function and the poisson distribution to |
|
// calculate an approximate inverse, for large z |
|
// this is actually pretty accurate, but it fails badly |
|
// when z is very small. Also set our step-factor according |
|
// to how accurate we think the result is likely to be: |
|
// |
|
guess = 1 + inverse_poisson_cornish_fisher(z, q, p, pol); |
|
if(z > 5) |
|
{ |
|
if(z > 1000) |
|
factor = 1.01f; |
|
else if(z > 50) |
|
factor = 1.1f; |
|
else if(guess > 10) |
|
factor = 1.25f; |
|
else |
|
factor = 2; |
|
if(guess < 1.1) |
|
factor = 8; |
|
} |
|
} |
|
else if(z > 0.5) |
|
{ |
|
guess = z * 1.2f; |
|
} |
|
else |
|
{ |
|
guess = -0.4f / log(z); |
|
} |
|
// |
|
// Max iterations permitted: |
|
// |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
// |
|
// Use our generic derivative-free root finding procedure. |
|
// We could use Newton steps here, taking the PDF of the |
|
// Poisson distribution as our derivative, but that's |
|
// even worse performance-wise than the generic method :-( |
|
// |
|
std::pair<T, T> r = bracket_and_solve_root(f, guess, factor, false, tol, max_iter, pol); |
|
if(max_iter >= policies::get_max_root_iterations<Policy>()) |
|
policies::raise_evaluation_error<T>("boost::math::gamma_p_inva<%1%>(%1%, %1%)", "Unable to locate the root within a reasonable number of iterations, closest approximation so far was %1%", r.first, pol); |
|
return (r.first + r.second) / 2; |
|
} |
|
|
|
} // namespace detail |
|
|
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_p_inva(T1 x, T2 p, const Policy& pol) |
|
{ |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
if(p == 0) |
|
{ |
|
return tools::max_value<result_type>(); |
|
} |
|
if(p == 1) |
|
{ |
|
return tools::min_value<result_type>(); |
|
} |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
|
detail::gamma_inva_imp( |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(p), |
|
static_cast<value_type>(1 - static_cast<value_type>(p)), |
|
pol), "boost::math::gamma_p_inva<%1%>(%1%, %1%)"); |
|
} |
|
|
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_q_inva(T1 x, T2 q, const Policy& pol) |
|
{ |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
if(q == 1) |
|
{ |
|
return tools::max_value<result_type>(); |
|
} |
|
if(q == 0) |
|
{ |
|
return tools::min_value<result_type>(); |
|
} |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
|
detail::gamma_inva_imp( |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(1 - static_cast<value_type>(q)), |
|
static_cast<value_type>(q), |
|
pol), "boost::math::gamma_q_inva<%1%>(%1%, %1%)"); |
|
} |
|
|
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_p_inva(T1 x, T2 p) |
|
{ |
|
return boost::math::gamma_p_inva(x, p, policies::policy<>()); |
|
} |
|
|
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_q_inva(T1 x, T2 q) |
|
{ |
|
return boost::math::gamma_q_inva(x, q, policies::policy<>()); |
|
} |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
#endif // BOOST_MATH_SP_DETAIL_GAMMA_INVA |
|
|
|
|
|
|
|
|