You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
553 lines
17 KiB
553 lines
17 KiB
// Copyright (c) 2006 Xiaogang Zhang |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_BESSEL_JY_HPP |
|
#define BOOST_MATH_BESSEL_JY_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/tools/config.hpp> |
|
#include <boost/math/special_functions/gamma.hpp> |
|
#include <boost/math/special_functions/sign.hpp> |
|
#include <boost/math/special_functions/hypot.hpp> |
|
#include <boost/math/special_functions/sin_pi.hpp> |
|
#include <boost/math/special_functions/cos_pi.hpp> |
|
#include <boost/math/special_functions/detail/bessel_jy_asym.hpp> |
|
#include <boost/math/special_functions/detail/bessel_jy_series.hpp> |
|
#include <boost/math/constants/constants.hpp> |
|
#include <boost/math/policies/error_handling.hpp> |
|
#include <boost/mpl/if.hpp> |
|
#include <boost/type_traits/is_floating_point.hpp> |
|
#include <complex> |
|
|
|
// Bessel functions of the first and second kind of fractional order |
|
|
|
namespace boost { namespace math { |
|
|
|
namespace detail { |
|
|
|
// |
|
// Simultaneous calculation of A&S 9.2.9 and 9.2.10 |
|
// for use in A&S 9.2.5 and 9.2.6. |
|
// This series is quick to evaluate, but divergent unless |
|
// x is very large, in fact it's pretty hard to figure out |
|
// with any degree of precision when this series actually |
|
// *will* converge!! Consequently, we may just have to |
|
// try it and see... |
|
// |
|
template <class T, class Policy> |
|
bool hankel_PQ(T v, T x, T* p, T* q, const Policy& ) |
|
{ |
|
BOOST_MATH_STD_USING |
|
T tolerance = 2 * policies::get_epsilon<T, Policy>(); |
|
*p = 1; |
|
*q = 0; |
|
T k = 1; |
|
T z8 = 8 * x; |
|
T sq = 1; |
|
T mu = 4 * v * v; |
|
T term = 1; |
|
bool ok = true; |
|
do |
|
{ |
|
term *= (mu - sq * sq) / (k * z8); |
|
*q += term; |
|
k += 1; |
|
sq += 2; |
|
T mult = (sq * sq - mu) / (k * z8); |
|
ok = fabs(mult) < 0.5f; |
|
term *= mult; |
|
*p += term; |
|
k += 1; |
|
sq += 2; |
|
} |
|
while((fabs(term) > tolerance * *p) && ok); |
|
return ok; |
|
} |
|
|
|
// Calculate Y(v, x) and Y(v+1, x) by Temme's method, see |
|
// Temme, Journal of Computational Physics, vol 21, 343 (1976) |
|
template <typename T, typename Policy> |
|
int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol) |
|
{ |
|
T g, h, p, q, f, coef, sum, sum1, tolerance; |
|
T a, d, e, sigma; |
|
unsigned long k; |
|
|
|
BOOST_MATH_STD_USING |
|
using namespace boost::math::tools; |
|
using namespace boost::math::constants; |
|
|
|
BOOST_ASSERT(fabs(v) <= 0.5f); // precondition for using this routine |
|
|
|
T gp = boost::math::tgamma1pm1(v, pol); |
|
T gm = boost::math::tgamma1pm1(-v, pol); |
|
T spv = boost::math::sin_pi(v, pol); |
|
T spv2 = boost::math::sin_pi(v/2, pol); |
|
T xp = pow(x/2, v); |
|
|
|
a = log(x / 2); |
|
sigma = -a * v; |
|
d = abs(sigma) < tools::epsilon<T>() ? |
|
T(1) : sinh(sigma) / sigma; |
|
e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2) |
|
: T(2 * spv2 * spv2 / v); |
|
|
|
T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v)); |
|
T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2); |
|
T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv); |
|
f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv; |
|
|
|
p = vspv / (xp * (1 + gm)); |
|
q = vspv * xp / (1 + gp); |
|
|
|
g = f + e * q; |
|
h = p; |
|
coef = 1; |
|
sum = coef * g; |
|
sum1 = coef * h; |
|
|
|
T v2 = v * v; |
|
T coef_mult = -x * x / 4; |
|
|
|
// series summation |
|
tolerance = policies::get_epsilon<T, Policy>(); |
|
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++) |
|
{ |
|
f = (k * f + p + q) / (k*k - v2); |
|
p /= k - v; |
|
q /= k + v; |
|
g = f + e * q; |
|
h = p - k * g; |
|
coef *= coef_mult / k; |
|
sum += coef * g; |
|
sum1 += coef * h; |
|
if (abs(coef * g) < abs(sum) * tolerance) |
|
{ |
|
break; |
|
} |
|
} |
|
policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol); |
|
*Y = -sum; |
|
*Y1 = -2 * sum1 / x; |
|
|
|
return 0; |
|
} |
|
|
|
// Evaluate continued fraction fv = J_(v+1) / J_v, see |
|
// Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 |
|
template <typename T, typename Policy> |
|
int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol) |
|
{ |
|
T C, D, f, a, b, delta, tiny, tolerance; |
|
unsigned long k; |
|
int s = 1; |
|
|
|
BOOST_MATH_STD_USING |
|
|
|
// |x| <= |v|, CF1_jy converges rapidly |
|
// |x| > |v|, CF1_jy needs O(|x|) iterations to converge |
|
|
|
// modified Lentz's method, see |
|
// Lentz, Applied Optics, vol 15, 668 (1976) |
|
tolerance = 2 * policies::get_epsilon<T, Policy>();; |
|
tiny = sqrt(tools::min_value<T>()); |
|
C = f = tiny; // b0 = 0, replace with tiny |
|
D = 0; |
|
for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++) |
|
{ |
|
a = -1; |
|
b = 2 * (v + k) / x; |
|
C = b + a / C; |
|
D = b + a * D; |
|
if (C == 0) { C = tiny; } |
|
if (D == 0) { D = tiny; } |
|
D = 1 / D; |
|
delta = C * D; |
|
f *= delta; |
|
if (D < 0) { s = -s; } |
|
if (abs(delta - 1) < tolerance) |
|
{ break; } |
|
} |
|
policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol); |
|
*fv = -f; |
|
*sign = s; // sign of denominator |
|
|
|
return 0; |
|
} |
|
// |
|
// This algorithm was originally written by Xiaogang Zhang |
|
// using std::complex to perform the complex arithmetic. |
|
// However, that turns out to 10x or more slower than using |
|
// all real-valued arithmetic, so it's been rewritten using |
|
// real values only. |
|
// |
|
template <typename T, typename Policy> |
|
int CF2_jy(T v, T x, T* p, T* q, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp; |
|
T tiny; |
|
unsigned long k; |
|
|
|
// |x| >= |v|, CF2_jy converges rapidly |
|
// |x| -> 0, CF2_jy fails to converge |
|
BOOST_ASSERT(fabs(x) > 1); |
|
|
|
// modified Lentz's method, complex numbers involved, see |
|
// Lentz, Applied Optics, vol 15, 668 (1976) |
|
T tolerance = 2 * policies::get_epsilon<T, Policy>(); |
|
tiny = sqrt(tools::min_value<T>()); |
|
Cr = fr = -0.5f / x; |
|
Ci = fi = 1; |
|
//Dr = Di = 0; |
|
T v2 = v * v; |
|
a = (0.25f - v2) / x; // Note complex this one time only! |
|
br = 2 * x; |
|
bi = 2; |
|
temp = Cr * Cr + 1; |
|
Ci = bi + a * Cr / temp; |
|
Cr = br + a / temp; |
|
Dr = br; |
|
Di = bi; |
|
//std::cout << "C = " << Cr << " " << Ci << std::endl; |
|
//std::cout << "D = " << Dr << " " << Di << std::endl; |
|
if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } |
|
if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } |
|
temp = Dr * Dr + Di * Di; |
|
Dr = Dr / temp; |
|
Di = -Di / temp; |
|
delta_r = Cr * Dr - Ci * Di; |
|
delta_i = Ci * Dr + Cr * Di; |
|
temp = fr; |
|
fr = temp * delta_r - fi * delta_i; |
|
fi = temp * delta_i + fi * delta_r; |
|
//std::cout << fr << " " << fi << std::endl; |
|
for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++) |
|
{ |
|
a = k - 0.5f; |
|
a *= a; |
|
a -= v2; |
|
bi += 2; |
|
temp = Cr * Cr + Ci * Ci; |
|
Cr = br + a * Cr / temp; |
|
Ci = bi - a * Ci / temp; |
|
Dr = br + a * Dr; |
|
Di = bi + a * Di; |
|
//std::cout << "C = " << Cr << " " << Ci << std::endl; |
|
//std::cout << "D = " << Dr << " " << Di << std::endl; |
|
if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; } |
|
if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; } |
|
temp = Dr * Dr + Di * Di; |
|
Dr = Dr / temp; |
|
Di = -Di / temp; |
|
delta_r = Cr * Dr - Ci * Di; |
|
delta_i = Ci * Dr + Cr * Di; |
|
temp = fr; |
|
fr = temp * delta_r - fi * delta_i; |
|
fi = temp * delta_i + fi * delta_r; |
|
if (fabs(delta_r - 1) + fabs(delta_i) < tolerance) |
|
break; |
|
//std::cout << fr << " " << fi << std::endl; |
|
} |
|
policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol); |
|
*p = fr; |
|
*q = fi; |
|
|
|
return 0; |
|
} |
|
|
|
enum |
|
{ |
|
need_j = 1, need_y = 2 |
|
}; |
|
|
|
// Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see |
|
// Barnett et al, Computer Physics Communications, vol 8, 377 (1974) |
|
template <typename T, typename Policy> |
|
int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol) |
|
{ |
|
BOOST_ASSERT(x >= 0); |
|
|
|
T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu; |
|
T W, p, q, gamma, current, prev, next; |
|
bool reflect = false; |
|
unsigned n, k; |
|
int s; |
|
int org_kind = kind; |
|
T cp = 0; |
|
T sp = 0; |
|
|
|
static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)"; |
|
|
|
BOOST_MATH_STD_USING |
|
using namespace boost::math::tools; |
|
using namespace boost::math::constants; |
|
|
|
if (v < 0) |
|
{ |
|
reflect = true; |
|
v = -v; // v is non-negative from here |
|
kind = need_j|need_y; // need both for reflection formula |
|
} |
|
n = iround(v, pol); |
|
u = v - n; // -1/2 <= u < 1/2 |
|
|
|
if(reflect) |
|
{ |
|
T z = (u + n % 2); |
|
cp = boost::math::cos_pi(z, pol); |
|
sp = boost::math::sin_pi(z, pol); |
|
} |
|
|
|
if (x == 0) |
|
{ |
|
*J = *Y = policies::raise_overflow_error<T>( |
|
function, 0, pol); |
|
return 1; |
|
} |
|
|
|
// x is positive until reflection |
|
W = T(2) / (x * pi<T>()); // Wronskian |
|
T Yv_scale = 1; |
|
if((x > 8) && (x < 1000) && hankel_PQ(v, x, &p, &q, pol)) |
|
{ |
|
// |
|
// Hankel approximation: note that this method works best when x |
|
// is large, but in that case we end up calculating sines and cosines |
|
// of large values, with horrendous resulting accuracy. It is fast though |
|
// when it works.... |
|
// |
|
T chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>(); |
|
T sc = sin(chi); |
|
T cc = cos(chi); |
|
chi = sqrt(2 / (boost::math::constants::pi<T>() * x)); |
|
Yv = chi * (p * sc + q * cc); |
|
Jv = chi * (p * cc - q * sc); |
|
} |
|
else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v))) |
|
{ |
|
// Evaluate using series representations. |
|
// This is particularly important for x << v as in this |
|
// area temme_jy may be slow to converge, if it converges at all. |
|
// Requires x is not an integer. |
|
if(kind&need_j) |
|
Jv = bessel_j_small_z_series(v, x, pol); |
|
else |
|
Jv = std::numeric_limits<T>::quiet_NaN(); |
|
if((org_kind&need_y && (!reflect || (cp != 0))) |
|
|| (org_kind & need_j && (reflect && (sp != 0)))) |
|
{ |
|
// Only calculate if we need it, and if the reflection formula will actually use it: |
|
Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol); |
|
} |
|
else |
|
Yv = std::numeric_limits<T>::quiet_NaN(); |
|
} |
|
else if((u == 0) && (x < policies::get_epsilon<T, Policy>())) |
|
{ |
|
// Truncated series evaluation for small x and v an integer, |
|
// much quicker in this area than temme_jy below. |
|
if(kind&need_j) |
|
Jv = bessel_j_small_z_series(v, x, pol); |
|
else |
|
Jv = std::numeric_limits<T>::quiet_NaN(); |
|
if((org_kind&need_y && (!reflect || (cp != 0))) |
|
|| (org_kind & need_j && (reflect && (sp != 0)))) |
|
{ |
|
// Only calculate if we need it, and if the reflection formula will actually use it: |
|
Yv = bessel_yn_small_z(n, x, &Yv_scale, pol); |
|
} |
|
else |
|
Yv = std::numeric_limits<T>::quiet_NaN(); |
|
} |
|
else if (x <= 2) // x in (0, 2] |
|
{ |
|
if(temme_jy(u, x, &Yu, &Yu1, pol)) // Temme series |
|
{ |
|
// domain error: |
|
*J = *Y = Yu; |
|
return 1; |
|
} |
|
prev = Yu; |
|
current = Yu1; |
|
T scale = 1; |
|
for (k = 1; k <= n; k++) // forward recurrence for Y |
|
{ |
|
T fact = 2 * (u + k) / x; |
|
if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
|
{ |
|
scale /= current; |
|
prev /= current; |
|
current = 1; |
|
} |
|
next = fact * current - prev; |
|
prev = current; |
|
current = next; |
|
} |
|
Yv = prev; |
|
Yv1 = current; |
|
if(kind&need_j) |
|
{ |
|
CF1_jy(v, x, &fv, &s, pol); // continued fraction CF1_jy |
|
Jv = scale * W / (Yv * fv - Yv1); // Wronskian relation |
|
} |
|
else |
|
Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
|
Yv_scale = scale; |
|
} |
|
else // x in (2, \infty) |
|
{ |
|
// Get Y(u, x): |
|
// define tag type that will dispatch to right limits: |
|
typedef typename bessel_asymptotic_tag<T, Policy>::type tag_type; |
|
|
|
T lim, ratio; |
|
switch(kind) |
|
{ |
|
case need_j: |
|
lim = asymptotic_bessel_j_limit<T>(v, tag_type()); |
|
break; |
|
case need_y: |
|
lim = asymptotic_bessel_y_limit<T>(tag_type()); |
|
break; |
|
default: |
|
lim = (std::max)( |
|
asymptotic_bessel_j_limit<T>(v, tag_type()), |
|
asymptotic_bessel_y_limit<T>(tag_type())); |
|
break; |
|
} |
|
if(x > lim) |
|
{ |
|
if(kind&need_y) |
|
{ |
|
Yu = asymptotic_bessel_y_large_x_2(u, x); |
|
Yu1 = asymptotic_bessel_y_large_x_2(T(u + 1), x); |
|
} |
|
else |
|
Yu = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
|
if(kind&need_j) |
|
{ |
|
Jv = asymptotic_bessel_j_large_x_2(v, x); |
|
} |
|
else |
|
Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
|
} |
|
else |
|
{ |
|
CF1_jy(v, x, &fv, &s, pol); |
|
// tiny initial value to prevent overflow |
|
T init = sqrt(tools::min_value<T>()); |
|
prev = fv * s * init; |
|
current = s * init; |
|
if(v < max_factorial<T>::value) |
|
{ |
|
for (k = n; k > 0; k--) // backward recurrence for J |
|
{ |
|
next = 2 * (u + k) * current / x - prev; |
|
prev = current; |
|
current = next; |
|
} |
|
ratio = (s * init) / current; // scaling ratio |
|
// can also call CF1_jy() to get fu, not much difference in precision |
|
fu = prev / current; |
|
} |
|
else |
|
{ |
|
// |
|
// When v is large we may get overflow in this calculation |
|
// leading to NaN's and other nasty surprises: |
|
// |
|
bool over = false; |
|
for (k = n; k > 0; k--) // backward recurrence for J |
|
{ |
|
T t = 2 * (u + k) / x; |
|
if(tools::max_value<T>() / t < current) |
|
{ |
|
over = true; |
|
break; |
|
} |
|
next = t * current - prev; |
|
prev = current; |
|
current = next; |
|
} |
|
if(!over) |
|
{ |
|
ratio = (s * init) / current; // scaling ratio |
|
// can also call CF1_jy() to get fu, not much difference in precision |
|
fu = prev / current; |
|
} |
|
else |
|
{ |
|
ratio = 0; |
|
fu = 1; |
|
} |
|
} |
|
CF2_jy(u, x, &p, &q, pol); // continued fraction CF2_jy |
|
T t = u / x - fu; // t = J'/J |
|
gamma = (p - t) / q; |
|
Ju = sign(current) * sqrt(W / (q + gamma * (p - t))); |
|
|
|
Jv = Ju * ratio; // normalization |
|
|
|
Yu = gamma * Ju; |
|
Yu1 = Yu * (u/x - p - q/gamma); |
|
} |
|
if(kind&need_y) |
|
{ |
|
// compute Y: |
|
prev = Yu; |
|
current = Yu1; |
|
for (k = 1; k <= n; k++) // forward recurrence for Y |
|
{ |
|
T fact = 2 * (u + k) / x; |
|
if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
|
{ |
|
prev /= current; |
|
Yv_scale /= current; |
|
current = 1; |
|
} |
|
next = fact * current - prev; |
|
prev = current; |
|
current = next; |
|
} |
|
Yv = prev; |
|
} |
|
else |
|
Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it. |
|
} |
|
|
|
if (reflect) |
|
{ |
|
if(tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv)) |
|
*J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
|
else |
|
*J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale)); // reflection formula |
|
if(tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv)) |
|
*Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
|
else |
|
*Y = sp * Jv + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale)); |
|
} |
|
else |
|
{ |
|
*J = Jv; |
|
if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv)) |
|
*Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
|
else |
|
*Y = Yv / Yv_scale; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
} // namespace detail |
|
|
|
}} // namespaces |
|
|
|
#endif // BOOST_MATH_BESSEL_JY_HPP |
|
|
|
|