You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
413 lines
12 KiB
413 lines
12 KiB
// Copyright (c) 2006 Xiaogang Zhang |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_BESSEL_IK_HPP |
|
#define BOOST_MATH_BESSEL_IK_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/special_functions/round.hpp> |
|
#include <boost/math/special_functions/gamma.hpp> |
|
#include <boost/math/special_functions/sin_pi.hpp> |
|
#include <boost/math/constants/constants.hpp> |
|
#include <boost/math/policies/error_handling.hpp> |
|
#include <boost/math/tools/config.hpp> |
|
|
|
// Modified Bessel functions of the first and second kind of fractional order |
|
|
|
namespace boost { namespace math { |
|
|
|
namespace detail { |
|
|
|
template <class T, class Policy> |
|
struct cyl_bessel_i_small_z |
|
{ |
|
typedef T result_type; |
|
|
|
cyl_bessel_i_small_z(T v_, T z_) : k(0), v(v_), mult(z_*z_/4) |
|
{ |
|
BOOST_MATH_STD_USING |
|
term = 1; |
|
} |
|
|
|
T operator()() |
|
{ |
|
T result = term; |
|
++k; |
|
term *= mult / k; |
|
term /= k + v; |
|
return result; |
|
} |
|
private: |
|
unsigned k; |
|
T v; |
|
T term; |
|
T mult; |
|
}; |
|
|
|
template <class T, class Policy> |
|
inline T bessel_i_small_z_series(T v, T x, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
T prefix; |
|
if(v < max_factorial<T>::value) |
|
{ |
|
prefix = pow(x / 2, v) / boost::math::tgamma(v + 1, pol); |
|
} |
|
else |
|
{ |
|
prefix = v * log(x / 2) - boost::math::lgamma(v + 1, pol); |
|
prefix = exp(prefix); |
|
} |
|
if(prefix == 0) |
|
return prefix; |
|
|
|
cyl_bessel_i_small_z<T, Policy> s(v, x); |
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) |
|
T zero = 0; |
|
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero); |
|
#else |
|
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter); |
|
#endif |
|
policies::check_series_iterations<T>("boost::math::bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol); |
|
return prefix * result; |
|
} |
|
|
|
// Calculate K(v, x) and K(v+1, x) by method analogous to |
|
// Temme, Journal of Computational Physics, vol 21, 343 (1976) |
|
template <typename T, typename Policy> |
|
int temme_ik(T v, T x, T* K, T* K1, const Policy& pol) |
|
{ |
|
T f, h, p, q, coef, sum, sum1, tolerance; |
|
T a, b, c, d, sigma, gamma1, gamma2; |
|
unsigned long k; |
|
|
|
BOOST_MATH_STD_USING |
|
using namespace boost::math::tools; |
|
using namespace boost::math::constants; |
|
|
|
|
|
// |x| <= 2, Temme series converge rapidly |
|
// |x| > 2, the larger the |x|, the slower the convergence |
|
BOOST_ASSERT(abs(x) <= 2); |
|
BOOST_ASSERT(abs(v) <= 0.5f); |
|
|
|
T gp = boost::math::tgamma1pm1(v, pol); |
|
T gm = boost::math::tgamma1pm1(-v, pol); |
|
|
|
a = log(x / 2); |
|
b = exp(v * a); |
|
sigma = -a * v; |
|
c = abs(v) < tools::epsilon<T>() ? |
|
T(1) : T(boost::math::sin_pi(v) / (v * pi<T>())); |
|
d = abs(sigma) < tools::epsilon<T>() ? |
|
T(1) : T(sinh(sigma) / sigma); |
|
gamma1 = abs(v) < tools::epsilon<T>() ? |
|
T(-euler<T>()) : T((0.5f / v) * (gp - gm) * c); |
|
gamma2 = (2 + gp + gm) * c / 2; |
|
|
|
// initial values |
|
p = (gp + 1) / (2 * b); |
|
q = (1 + gm) * b / 2; |
|
f = (cosh(sigma) * gamma1 + d * (-a) * gamma2) / c; |
|
h = p; |
|
coef = 1; |
|
sum = coef * f; |
|
sum1 = coef * h; |
|
|
|
// series summation |
|
tolerance = tools::epsilon<T>(); |
|
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++) |
|
{ |
|
f = (k * f + p + q) / (k*k - v*v); |
|
p /= k - v; |
|
q /= k + v; |
|
h = p - k * f; |
|
coef *= x * x / (4 * k); |
|
sum += coef * f; |
|
sum1 += coef * h; |
|
if (abs(coef * f) < abs(sum) * tolerance) |
|
{ |
|
break; |
|
} |
|
} |
|
policies::check_series_iterations<T>("boost::math::bessel_ik<%1%>(%1%,%1%) in temme_ik", k, pol); |
|
|
|
*K = sum; |
|
*K1 = 2 * sum1 / x; |
|
|
|
return 0; |
|
} |
|
|
|
// Evaluate continued fraction fv = I_(v+1) / I_v, derived from |
|
// Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 |
|
template <typename T, typename Policy> |
|
int CF1_ik(T v, T x, T* fv, const Policy& pol) |
|
{ |
|
T C, D, f, a, b, delta, tiny, tolerance; |
|
unsigned long k; |
|
|
|
BOOST_MATH_STD_USING |
|
|
|
// |x| <= |v|, CF1_ik converges rapidly |
|
// |x| > |v|, CF1_ik needs O(|x|) iterations to converge |
|
|
|
// modified Lentz's method, see |
|
// Lentz, Applied Optics, vol 15, 668 (1976) |
|
tolerance = 2 * tools::epsilon<T>(); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); |
|
tiny = sqrt(tools::min_value<T>()); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(tiny); |
|
C = f = tiny; // b0 = 0, replace with tiny |
|
D = 0; |
|
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++) |
|
{ |
|
a = 1; |
|
b = 2 * (v + k) / x; |
|
C = b + a / C; |
|
D = b + a * D; |
|
if (C == 0) { C = tiny; } |
|
if (D == 0) { D = tiny; } |
|
D = 1 / D; |
|
delta = C * D; |
|
f *= delta; |
|
BOOST_MATH_INSTRUMENT_VARIABLE(delta-1); |
|
if (abs(delta - 1) <= tolerance) |
|
{ |
|
break; |
|
} |
|
} |
|
BOOST_MATH_INSTRUMENT_VARIABLE(k); |
|
policies::check_series_iterations<T>("boost::math::bessel_ik<%1%>(%1%,%1%) in CF1_ik", k, pol); |
|
|
|
*fv = f; |
|
|
|
return 0; |
|
} |
|
|
|
// Calculate K(v, x) and K(v+1, x) by evaluating continued fraction |
|
// z1 / z0 = U(v+1.5, 2v+1, 2x) / U(v+0.5, 2v+1, 2x), see |
|
// Thompson and Barnett, Computer Physics Communications, vol 47, 245 (1987) |
|
template <typename T, typename Policy> |
|
int CF2_ik(T v, T x, T* Kv, T* Kv1, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
using namespace boost::math::constants; |
|
|
|
T S, C, Q, D, f, a, b, q, delta, tolerance, current, prev; |
|
unsigned long k; |
|
|
|
// |x| >= |v|, CF2_ik converges rapidly |
|
// |x| -> 0, CF2_ik fails to converge |
|
|
|
BOOST_ASSERT(abs(x) > 1); |
|
|
|
// Steed's algorithm, see Thompson and Barnett, |
|
// Journal of Computational Physics, vol 64, 490 (1986) |
|
tolerance = tools::epsilon<T>(); |
|
a = v * v - 0.25f; |
|
b = 2 * (x + 1); // b1 |
|
D = 1 / b; // D1 = 1 / b1 |
|
f = delta = D; // f1 = delta1 = D1, coincidence |
|
prev = 0; // q0 |
|
current = 1; // q1 |
|
Q = C = -a; // Q1 = C1 because q1 = 1 |
|
S = 1 + Q * delta; // S1 |
|
BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(a); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(b); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(D); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(f); |
|
for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++) // starting from 2 |
|
{ |
|
// continued fraction f = z1 / z0 |
|
a -= 2 * (k - 1); |
|
b += 2; |
|
D = 1 / (b + a * D); |
|
delta *= b * D - 1; |
|
f += delta; |
|
|
|
// series summation S = 1 + \sum_{n=1}^{\infty} C_n * z_n / z_0 |
|
q = (prev - (b - 2) * current) / a; |
|
prev = current; |
|
current = q; // forward recurrence for q |
|
C *= -a / k; |
|
Q += C * q; |
|
S += Q * delta; |
|
|
|
// S converges slower than f |
|
BOOST_MATH_INSTRUMENT_VARIABLE(Q * delta); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(abs(S) * tolerance); |
|
if (abs(Q * delta) < abs(S) * tolerance) |
|
{ |
|
break; |
|
} |
|
} |
|
policies::check_series_iterations<T>("boost::math::bessel_ik<%1%>(%1%,%1%) in CF2_ik", k, pol); |
|
|
|
*Kv = sqrt(pi<T>() / (2 * x)) * exp(-x) / S; |
|
*Kv1 = *Kv * (0.5f + v + x + (v * v - 0.25f) * f) / x; |
|
BOOST_MATH_INSTRUMENT_VARIABLE(*Kv); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(*Kv1); |
|
|
|
return 0; |
|
} |
|
|
|
enum{ |
|
need_i = 1, |
|
need_k = 2 |
|
}; |
|
|
|
// Compute I(v, x) and K(v, x) simultaneously by Temme's method, see |
|
// Temme, Journal of Computational Physics, vol 19, 324 (1975) |
|
template <typename T, typename Policy> |
|
int bessel_ik(T v, T x, T* I, T* K, int kind, const Policy& pol) |
|
{ |
|
// Kv1 = K_(v+1), fv = I_(v+1) / I_v |
|
// Ku1 = K_(u+1), fu = I_(u+1) / I_u |
|
T u, Iv, Kv, Kv1, Ku, Ku1, fv; |
|
T W, current, prev, next; |
|
bool reflect = false; |
|
unsigned n, k; |
|
int org_kind = kind; |
|
BOOST_MATH_INSTRUMENT_VARIABLE(v); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(x); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(kind); |
|
|
|
BOOST_MATH_STD_USING |
|
using namespace boost::math::tools; |
|
using namespace boost::math::constants; |
|
|
|
static const char* function = "boost::math::bessel_ik<%1%>(%1%,%1%)"; |
|
|
|
if (v < 0) |
|
{ |
|
reflect = true; |
|
v = -v; // v is non-negative from here |
|
kind |= need_k; |
|
} |
|
n = iround(v, pol); |
|
u = v - n; // -1/2 <= u < 1/2 |
|
BOOST_MATH_INSTRUMENT_VARIABLE(n); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(u); |
|
|
|
if (x < 0) |
|
{ |
|
*I = *K = policies::raise_domain_error<T>(function, |
|
"Got x = %1% but real argument x must be non-negative, complex number result not supported.", x, pol); |
|
return 1; |
|
} |
|
if (x == 0) |
|
{ |
|
Iv = (v == 0) ? static_cast<T>(1) : static_cast<T>(0); |
|
if(kind & need_k) |
|
{ |
|
Kv = policies::raise_overflow_error<T>(function, 0, pol); |
|
} |
|
else |
|
{ |
|
Kv = std::numeric_limits<T>::quiet_NaN(); // any value will do |
|
} |
|
|
|
if(reflect && (kind & need_i)) |
|
{ |
|
T z = (u + n % 2); |
|
Iv = boost::math::sin_pi(z, pol) == 0 ? |
|
Iv : |
|
policies::raise_overflow_error<T>(function, 0, pol); // reflection formula |
|
} |
|
|
|
*I = Iv; |
|
*K = Kv; |
|
return 0; |
|
} |
|
|
|
// x is positive until reflection |
|
W = 1 / x; // Wronskian |
|
if (x <= 2) // x in (0, 2] |
|
{ |
|
temme_ik(u, x, &Ku, &Ku1, pol); // Temme series |
|
} |
|
else // x in (2, \infty) |
|
{ |
|
CF2_ik(u, x, &Ku, &Ku1, pol); // continued fraction CF2_ik |
|
} |
|
prev = Ku; |
|
current = Ku1; |
|
T scale = 1; |
|
for (k = 1; k <= n; k++) // forward recurrence for K |
|
{ |
|
T fact = 2 * (u + k) / x; |
|
if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)) |
|
{ |
|
prev /= current; |
|
scale /= current; |
|
current = 1; |
|
} |
|
next = fact * current + prev; |
|
prev = current; |
|
current = next; |
|
} |
|
Kv = prev; |
|
Kv1 = current; |
|
if(kind & need_i) |
|
{ |
|
T lim = (4 * v * v + 10) / (8 * x); |
|
lim *= lim; |
|
lim *= lim; |
|
lim /= 24; |
|
if((lim < tools::epsilon<T>() * 10) && (x > 100)) |
|
{ |
|
// x is huge compared to v, CF1 may be very slow |
|
// to converge so use asymptotic expansion for large |
|
// x case instead. Note that the asymptotic expansion |
|
// isn't very accurate - so it's deliberately very hard |
|
// to get here - probably we're going to overflow: |
|
Iv = asymptotic_bessel_i_large_x(v, x, pol); |
|
} |
|
else if((x / v < 0.25) && (v > 0)) |
|
{ |
|
Iv = bessel_i_small_z_series(v, x, pol); |
|
} |
|
else |
|
{ |
|
CF1_ik(v, x, &fv, pol); // continued fraction CF1_ik |
|
Iv = scale * W / (Kv * fv + Kv1); // Wronskian relation |
|
} |
|
} |
|
else |
|
Iv = std::numeric_limits<T>::quiet_NaN(); // any value will do |
|
|
|
if (reflect) |
|
{ |
|
T z = (u + n % 2); |
|
T fact = (2 / pi<T>()) * (boost::math::sin_pi(z) * Kv); |
|
if(fact == 0) |
|
*I = Iv; |
|
else if(tools::max_value<T>() * scale < fact) |
|
*I = (org_kind & need_i) ? T(sign(fact) * sign(scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
|
else |
|
*I = Iv + fact / scale; // reflection formula |
|
} |
|
else |
|
{ |
|
*I = Iv; |
|
} |
|
if(tools::max_value<T>() * scale < Kv) |
|
*K = (org_kind & need_k) ? T(sign(Kv) * sign(scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0); |
|
else |
|
*K = Kv / scale; |
|
BOOST_MATH_INSTRUMENT_VARIABLE(*I); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(*K); |
|
return 0; |
|
} |
|
|
|
}}} // namespaces |
|
|
|
#endif // BOOST_MATH_BESSEL_IK_HPP |
|
|
|
|