You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1292 lines
49 KiB
1292 lines
49 KiB
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost |
|
// Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// See http://www.boost.org/libs/container for documentation. |
|
// |
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
#ifndef BOOST_CONTAINERS_MAP_HPP |
|
#define BOOST_CONTAINERS_MAP_HPP |
|
|
|
#if (defined _MSC_VER) && (_MSC_VER >= 1200) |
|
# pragma once |
|
#endif |
|
|
|
#include <boost/container/detail/config_begin.hpp> |
|
#include <boost/container/detail/workaround.hpp> |
|
|
|
#include <boost/container/container_fwd.hpp> |
|
#include <utility> |
|
#include <functional> |
|
#include <memory> |
|
#include <stdexcept> |
|
#include <boost/container/detail/tree.hpp> |
|
#include <boost/container/detail/value_init.hpp> |
|
#include <boost/type_traits/has_trivial_destructor.hpp> |
|
#include <boost/container/detail/mpl.hpp> |
|
#include <boost/container/detail/utilities.hpp> |
|
#include <boost/container/detail/pair.hpp> |
|
#include <boost/container/detail/type_traits.hpp> |
|
#include <boost/move/move.hpp> |
|
#include <boost/static_assert.hpp> |
|
|
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
namespace boost { |
|
namespace container { |
|
#else |
|
namespace boost { |
|
namespace container { |
|
#endif |
|
|
|
/// @cond |
|
// Forward declarations of operators == and <, needed for friend declarations. |
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y); |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y); |
|
/// @endcond |
|
|
|
//! A map is a kind of associative container that supports unique keys (contains at |
|
//! most one of each key value) and provides for fast retrieval of values of another |
|
//! type T based on the keys. The map class supports bidirectional iterators. |
|
//! |
|
//! A map satisfies all of the requirements of a container and of a reversible |
|
//! container and of an associative container. For a |
|
//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>. |
|
//! |
|
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>). |
|
//! |
|
//! A is the allocator to allocate the value_types |
|
//! (e.g. <i>allocator< std::pair<const Key, T> > </i>). |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class Key, class T, class Pred = std::less< std::pair< const Key, T> >, class A = std::allocator<T> > |
|
#else |
|
template <class Key, class T, class Pred, class A> |
|
#endif |
|
class map |
|
{ |
|
/// @cond |
|
private: |
|
BOOST_COPYABLE_AND_MOVABLE(map) |
|
typedef containers_detail::rbtree<Key, |
|
std::pair<const Key, T>, |
|
containers_detail::select1st< std::pair<const Key, T> >, |
|
Pred, |
|
A> tree_t; |
|
tree_t m_tree; // red-black tree representing map |
|
|
|
/// @endcond |
|
|
|
public: |
|
|
|
// typedefs: |
|
typedef typename tree_t::key_type key_type; |
|
typedef typename tree_t::value_type value_type; |
|
typedef typename tree_t::pointer pointer; |
|
typedef typename tree_t::const_pointer const_pointer; |
|
typedef typename tree_t::reference reference; |
|
typedef typename tree_t::const_reference const_reference; |
|
typedef T mapped_type; |
|
typedef Pred key_compare; |
|
typedef typename tree_t::iterator iterator; |
|
typedef typename tree_t::const_iterator const_iterator; |
|
typedef typename tree_t::reverse_iterator reverse_iterator; |
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator; |
|
typedef typename tree_t::size_type size_type; |
|
typedef typename tree_t::difference_type difference_type; |
|
typedef typename tree_t::allocator_type allocator_type; |
|
typedef typename tree_t::stored_allocator_type stored_allocator_type; |
|
typedef std::pair<key_type, mapped_type> nonconst_value_type; |
|
typedef containers_detail::pair |
|
<key_type, mapped_type> nonconst_impl_value_type; |
|
|
|
/// @cond |
|
class value_compare_impl |
|
: public Pred, |
|
public std::binary_function<value_type, value_type, bool> |
|
{ |
|
friend class map<Key,T,Pred,A>; |
|
protected : |
|
value_compare_impl(const Pred &c) : Pred(c) {} |
|
public: |
|
bool operator()(const value_type& x, const value_type& y) const { |
|
return Pred::operator()(x.first, y.first); |
|
} |
|
}; |
|
/// @endcond |
|
typedef value_compare_impl value_compare; |
|
|
|
//! <b>Effects</b>: Constructs an empty map using the specified comparison object |
|
//! and allocator. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
explicit map(const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_tree(comp, a) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and |
|
//! allocator, and inserts elements from the range [first ,last ). |
|
//! |
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using |
|
//! comp and otherwise N logN, where N is last - first. |
|
template <class InputIterator> |
|
map(InputIterator first, InputIterator last, const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_tree(first, last, comp, a, true) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and |
|
//! allocator, and inserts elements from the ordered unique range [first ,last). This function |
|
//! is more efficient than the normal range creation for ordered ranges. |
|
//! |
|
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be |
|
//! unique values. |
|
//! |
|
//! <b>Complexity</b>: Linear in N. |
|
template <class InputIterator> |
|
map( ordered_unique_range_t, InputIterator first, InputIterator last |
|
, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) |
|
: m_tree(ordered_range, first, last, comp, a) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Copy constructs a map. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
map(const map<Key,T,Pred,A>& x) |
|
: m_tree(x.m_tree) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources. |
|
//! |
|
//! <b>Complexity</b>: Construct. |
|
//! |
|
//! <b>Postcondition</b>: x is emptied. |
|
map(BOOST_RV_REF(map) x) |
|
: m_tree(boost::move(x.m_tree)) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Makes *this a copy of x. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
map& operator=(BOOST_COPY_ASSIGN_REF(map) x) |
|
{ m_tree = x.m_tree; return *this; } |
|
|
|
//! <b>Effects</b>: this->swap(x.get()). |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
map& operator=(BOOST_RV_REF(map) x) |
|
{ m_tree = boost::move(x.m_tree); return *this; } |
|
|
|
//! <b>Effects</b>: Returns the comparison object out |
|
//! of which a was constructed. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
key_compare key_comp() const |
|
{ return m_tree.key_comp(); } |
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out |
|
//! of the comparison object. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
value_compare value_comp() const |
|
{ return value_compare(m_tree.key_comp()); } |
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that |
|
//! was passed to the object's constructor. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
allocator_type get_allocator() const |
|
{ return m_tree.get_allocator(); } |
|
|
|
const stored_allocator_type &get_stored_allocator() const |
|
{ return m_tree.get_stored_allocator(); } |
|
|
|
stored_allocator_type &get_stored_allocator() |
|
{ return m_tree.get_stored_allocator(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator begin() |
|
{ return m_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator begin() const |
|
{ return m_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator end() |
|
{ return m_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator end() const |
|
{ return m_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rbegin() |
|
{ return m_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rbegin() const |
|
{ return m_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rend() |
|
{ return m_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rend() const |
|
{ return m_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
bool empty() const |
|
{ return m_tree.empty(); } |
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type size() const |
|
{ return m_tree.size(); } |
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type max_size() const |
|
{ return m_tree.max_size(); } |
|
|
|
//! Effects: If there is no key equivalent to x in the map, inserts |
|
//! value_type(x, T()) into the map. |
|
//! |
|
//! Returns: A reference to the mapped_type corresponding to x in *this. |
|
//! |
|
//! Complexity: Logarithmic. |
|
T& operator[](const key_type& k) |
|
{ |
|
//we can optimize this |
|
iterator i = lower_bound(k); |
|
// i->first is greater than or equivalent to k. |
|
if (i == end() || key_comp()(k, (*i).first)){ |
|
containers_detail::value_init<T> v; |
|
value_type val(k, boost::move(v.m_t)); |
|
i = insert(i, boost::move(val)); |
|
} |
|
return (*i).second; |
|
} |
|
|
|
//! Effects: If there is no key equivalent to x in the map, inserts |
|
//! value_type(boost::move(x), T()) into the map (the key is move-constructed) |
|
//! |
|
//! Returns: A reference to the mapped_type corresponding to x in *this. |
|
//! |
|
//! Complexity: Logarithmic. |
|
T& operator[](BOOST_RV_REF(key_type) mk) |
|
{ |
|
key_type &k = mk; |
|
//we can optimize this |
|
iterator i = lower_bound(k); |
|
// i->first is greater than or equivalent to k. |
|
if (i == end() || key_comp()(k, (*i).first)){ |
|
value_type val(boost::move(k), boost::move(T())); |
|
i = insert(i, boost::move(val)); |
|
} |
|
return (*i).second; |
|
} |
|
|
|
//! Returns: A reference to the element whose key is equivalent to x. |
|
//! Throws: An exception object of type out_of_range if no such element is present. |
|
//! Complexity: logarithmic. |
|
T& at(const key_type& k) |
|
{ |
|
iterator i = this->find(k); |
|
if(i == this->end()){ |
|
throw std::out_of_range("key not found"); |
|
} |
|
return i->second; |
|
} |
|
|
|
//! Returns: A reference to the element whose key is equivalent to x. |
|
//! Throws: An exception object of type out_of_range if no such element is present. |
|
//! Complexity: logarithmic. |
|
const T& at(const key_type& k) const |
|
{ |
|
const_iterator i = this->find(k); |
|
if(i == this->end()){ |
|
throw std::out_of_range("key not found"); |
|
} |
|
return i->second; |
|
} |
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x. |
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
void swap(map& x) |
|
{ m_tree.swap(x.m_tree); } |
|
|
|
//! <b>Effects</b>: Inserts x if and only if there is no element in the container |
|
//! with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
std::pair<iterator,bool> insert(const value_type& x) |
|
{ return m_tree.insert_unique(x); } |
|
|
|
//! <b>Effects</b>: Inserts a new value_type created from the pair if and only if |
|
//! there is no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
std::pair<iterator,bool> insert(const nonconst_value_type& x) |
|
{ return m_tree.insert_unique(x); } |
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and |
|
//! only if there is no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
std::pair<iterator,bool> insert(BOOST_RV_REF(nonconst_value_type) x) |
|
{ return m_tree.insert_unique(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and |
|
//! only if there is no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
std::pair<iterator,bool> insert(BOOST_RV_REF(nonconst_impl_value_type) x) |
|
{ return m_tree.insert_unique(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Move constructs a new value from x if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x) |
|
{ return m_tree.insert_unique(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, const value_type& x) |
|
{ return m_tree.insert_unique(position, x); } |
|
|
|
//! <b>Effects</b>: Move constructs a new value from x if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, BOOST_RV_REF(nonconst_value_type) x) |
|
{ return m_tree.insert_unique(position, boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Move constructs a new value from x if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, BOOST_RV_REF(nonconst_impl_value_type) x) |
|
{ return m_tree.insert_unique(position, boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator insert(iterator position, const nonconst_value_type& x) |
|
{ return m_tree.insert_unique(position, x); } |
|
|
|
//! <b>Effects</b>: Inserts an element move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator insert(iterator position, BOOST_RV_REF(value_type) x) |
|
{ return m_tree.insert_unique(position, boost::move(x)); } |
|
|
|
//! <b>Requires</b>: first, last are not iterators into *this. |
|
//! |
|
//! <b>Effects</b>: inserts each element from the range [first,last) if and only |
|
//! if there is no element with key equivalent to the key of that element. |
|
//! |
|
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) |
|
template <class InputIterator> |
|
void insert(InputIterator first, InputIterator last) |
|
{ m_tree.insert_unique(first, last); } |
|
|
|
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container if and only if there is |
|
//! no element in the container with an equivalent key. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
template <class... Args> |
|
iterator emplace(Args&&... args) |
|
{ return m_tree.emplace_unique(boost::forward<Args>(args)...); } |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container if and only if there is |
|
//! no element in the container with an equivalent key. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
template <class... Args> |
|
iterator emplace_hint(const_iterator hint, Args&&... args) |
|
{ return m_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); } |
|
|
|
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
iterator emplace() |
|
{ return m_tree.emplace_unique(); } |
|
|
|
iterator emplace_hint(const_iterator hint) |
|
{ return m_tree.emplace_hint_unique(hint); } |
|
|
|
#define BOOST_PP_LOCAL_MACRO(n) \ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ |
|
\ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _));}\ |
|
//! |
|
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) |
|
#include BOOST_PP_LOCAL_ITERATE() |
|
|
|
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position. |
|
//! |
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately |
|
//! following q prior to the element being erased. If no such element exists, |
|
//! returns end(). |
|
//! |
|
//! <b>Complexity</b>: Amortized constant time |
|
iterator erase(const_iterator position) |
|
{ return m_tree.erase(position); } |
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x. |
|
//! |
|
//! <b>Returns</b>: Returns the number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: log(size()) + count(k) |
|
size_type erase(const key_type& x) |
|
{ return m_tree.erase(x); } |
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last). |
|
//! |
|
//! <b>Returns</b>: Returns last. |
|
//! |
|
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last. |
|
iterator erase(const_iterator first, const_iterator last) |
|
{ return m_tree.erase(first, last); } |
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()). |
|
//! |
|
//! <b>Postcondition</b>: size() == 0. |
|
//! |
|
//! <b>Complexity</b>: linear in size(). |
|
void clear() |
|
{ m_tree.clear(); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator find(const key_type& x) |
|
{ return m_tree.find(x); } |
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
const_iterator find(const key_type& x) const |
|
{ return m_tree.find(x); } |
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x. |
|
//! |
|
//! <b>Complexity</b>: log(size())+count(k) |
|
size_type count(const key_type& x) const |
|
{ return m_tree.find(x) == m_tree.end() ? 0 : 1; } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator lower_bound(const key_type& x) |
|
{ return m_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator lower_bound(const key_type& x) const |
|
{ return m_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator upper_bound(const key_type& x) |
|
{ return m_tree.upper_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator upper_bound(const key_type& x) const |
|
{ return m_tree.upper_bound(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<iterator,iterator> equal_range(const key_type& x) |
|
{ return m_tree.equal_range(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const |
|
{ return m_tree.equal_range(x); } |
|
|
|
/// @cond |
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator== (const map<K1, T1, C1, A1>&, |
|
const map<K1, T1, C1, A1>&); |
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator< (const map<K1, T1, C1, A1>&, |
|
const map<K1, T1, C1, A1>&); |
|
/// @endcond |
|
}; |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y) |
|
{ return x.m_tree == y.m_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y) |
|
{ return x.m_tree < y.m_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator!=(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y) |
|
{ return !(x == y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y) |
|
{ return y < x; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<=(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y) |
|
{ return !(y < x); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>=(const map<Key,T,Pred,A>& x, |
|
const map<Key,T,Pred,A>& y) |
|
{ return !(x < y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline void swap(map<Key,T,Pred,A>& x, map<Key,T,Pred,A>& y) |
|
{ x.swap(y); } |
|
|
|
/// @cond |
|
|
|
// Forward declaration of operators < and ==, needed for friend declaration. |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y); |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y); |
|
|
|
} //namespace container { |
|
/* |
|
//!has_trivial_destructor_after_move<> == true_type |
|
//!specialization for optimizations |
|
template <class K, class T, class C, class A> |
|
struct has_trivial_destructor_after_move<boost::container::map<K, T, C, A> > |
|
{ |
|
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; |
|
}; |
|
*/ |
|
namespace container { |
|
|
|
/// @endcond |
|
|
|
//! A multimap is a kind of associative container that supports equivalent keys |
|
//! (possibly containing multiple copies of the same key value) and provides for |
|
//! fast retrieval of values of another type T based on the keys. The multimap class |
|
//! supports bidirectional iterators. |
|
//! |
|
//! A multimap satisfies all of the requirements of a container and of a reversible |
|
//! container and of an associative container. For a |
|
//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>. |
|
//! |
|
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>). |
|
//! |
|
//! A is the allocator to allocate the value_types |
|
//!(e.g. <i>allocator< std::pair<<b>const</b> Key, T> ></i>). |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class Key, class T, class Pred = std::less< std::pair< const Key, T> >, class A = std::allocator<T> > |
|
#else |
|
template <class Key, class T, class Pred, class A> |
|
#endif |
|
class multimap |
|
{ |
|
/// @cond |
|
private: |
|
BOOST_COPYABLE_AND_MOVABLE(multimap) |
|
typedef containers_detail::rbtree<Key, |
|
std::pair<const Key, T>, |
|
containers_detail::select1st< std::pair<const Key, T> >, |
|
Pred, |
|
A> tree_t; |
|
tree_t m_tree; // red-black tree representing map |
|
/// @endcond |
|
|
|
public: |
|
|
|
// typedefs: |
|
typedef typename tree_t::key_type key_type; |
|
typedef typename tree_t::value_type value_type; |
|
typedef typename tree_t::pointer pointer; |
|
typedef typename tree_t::const_pointer const_pointer; |
|
typedef typename tree_t::reference reference; |
|
typedef typename tree_t::const_reference const_reference; |
|
typedef T mapped_type; |
|
typedef Pred key_compare; |
|
typedef typename tree_t::iterator iterator; |
|
typedef typename tree_t::const_iterator const_iterator; |
|
typedef typename tree_t::reverse_iterator reverse_iterator; |
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator; |
|
typedef typename tree_t::size_type size_type; |
|
typedef typename tree_t::difference_type difference_type; |
|
typedef typename tree_t::allocator_type allocator_type; |
|
typedef typename tree_t::stored_allocator_type stored_allocator_type; |
|
typedef std::pair<key_type, mapped_type> nonconst_value_type; |
|
typedef containers_detail::pair |
|
<key_type, mapped_type> nonconst_impl_value_type; |
|
|
|
/// @cond |
|
class value_compare_impl |
|
: public Pred, |
|
public std::binary_function<value_type, value_type, bool> |
|
{ |
|
friend class multimap<Key,T,Pred,A>; |
|
protected : |
|
value_compare_impl(const Pred &c) : Pred(c) {} |
|
public: |
|
bool operator()(const value_type& x, const value_type& y) const { |
|
return Pred::operator()(x.first, y.first); |
|
} |
|
}; |
|
/// @endcond |
|
typedef value_compare_impl value_compare; |
|
|
|
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison |
|
//! object and allocator. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
explicit multimap(const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_tree(comp, a) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison object |
|
//! and allocator, and inserts elements from the range [first ,last ). |
|
//! |
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using |
|
//! comp and otherwise N logN, where N is last - first. |
|
template <class InputIterator> |
|
multimap(InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_tree(first, last, comp, a, false) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Constructs an empty multimap using the specified comparison object and |
|
//! allocator, and inserts elements from the ordered range [first ,last). This function |
|
//! is more efficient than the normal range creation for ordered ranges. |
|
//! |
|
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate. |
|
//! |
|
//! <b>Complexity</b>: Linear in N. |
|
template <class InputIterator> |
|
multimap(ordered_range_t ordered_range, InputIterator first, InputIterator last, const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_tree(ordered_range, first, last, comp, a) |
|
{} |
|
|
|
|
|
//! <b>Effects</b>: Copy constructs a multimap. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
multimap(const multimap<Key,T,Pred,A>& x) |
|
: m_tree(x.m_tree) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Move constructs a multimap. Constructs *this using x's resources. |
|
//! |
|
//! <b>Complexity</b>: Construct. |
|
//! |
|
//! <b>Postcondition</b>: x is emptied. |
|
multimap(BOOST_RV_REF(multimap) x) |
|
: m_tree(boost::move(x.m_tree)) |
|
{ |
|
//Allocator type must be std::pair<CONST Key, T> |
|
BOOST_STATIC_ASSERT((containers_detail::is_same<std::pair<const Key, T>, typename A::value_type>::value)); |
|
} |
|
|
|
//! <b>Effects</b>: Makes *this a copy of x. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
multimap& operator=(BOOST_COPY_ASSIGN_REF(multimap) x) |
|
{ m_tree = x.m_tree; return *this; } |
|
|
|
//! <b>Effects</b>: this->swap(x.get()). |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
multimap& operator=(BOOST_RV_REF(multimap) x) |
|
{ m_tree = boost::move(x.m_tree); return *this; } |
|
|
|
//! <b>Effects</b>: Returns the comparison object out |
|
//! of which a was constructed. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
key_compare key_comp() const |
|
{ return m_tree.key_comp(); } |
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out |
|
//! of the comparison object. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
value_compare value_comp() const |
|
{ return value_compare(m_tree.key_comp()); } |
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that |
|
//! was passed to the object's constructor. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
allocator_type get_allocator() const |
|
{ return m_tree.get_allocator(); } |
|
|
|
const stored_allocator_type &get_stored_allocator() const |
|
{ return m_tree.get_stored_allocator(); } |
|
|
|
stored_allocator_type &get_stored_allocator() |
|
{ return m_tree.get_stored_allocator(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator begin() |
|
{ return m_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator begin() const |
|
{ return m_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator end() |
|
{ return m_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator end() const |
|
{ return m_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rbegin() |
|
{ return m_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rbegin() const |
|
{ return m_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rend() |
|
{ return m_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rend() const |
|
{ return m_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
bool empty() const |
|
{ return m_tree.empty(); } |
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type size() const |
|
{ return m_tree.size(); } |
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type max_size() const |
|
{ return m_tree.max_size(); } |
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x. |
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
void swap(multimap& x) |
|
{ m_tree.swap(x.m_tree); } |
|
|
|
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the |
|
//! newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator insert(const value_type& x) |
|
{ return m_tree.insert_equal(x); } |
|
|
|
//! <b>Effects</b>: Inserts a new value constructed from x and returns |
|
//! the iterator pointing to the newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator insert(const nonconst_value_type& x) |
|
{ return m_tree.insert_equal(x); } |
|
|
|
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns |
|
//! the iterator pointing to the newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator insert(BOOST_RV_REF(nonconst_value_type) x) |
|
{ return m_tree.insert_equal(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns |
|
//! the iterator pointing to the newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator insert(BOOST_RV_REF(nonconst_impl_value_type) x) |
|
{ return m_tree.insert_equal(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, const value_type& x) |
|
{ return m_tree.insert_equal(position, x); } |
|
|
|
//! <b>Effects</b>: Inserts a new value constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, const nonconst_value_type& x) |
|
{ return m_tree.insert_equal(position, x); } |
|
|
|
//! <b>Effects</b>: Inserts a new value move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, BOOST_RV_REF(nonconst_value_type) x) |
|
{ return m_tree.insert_equal(position, boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a new value move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
iterator insert(iterator position, BOOST_RV_REF(nonconst_impl_value_type) x) |
|
{ return m_tree.insert_equal(position, boost::move(x)); } |
|
|
|
//! <b>Requires</b>: first, last are not iterators into *this. |
|
//! |
|
//! <b>Effects</b>: inserts each element from the range [first,last) . |
|
//! |
|
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) |
|
template <class InputIterator> |
|
void insert(InputIterator first, InputIterator last) |
|
{ m_tree.insert_equal(first, last); } |
|
|
|
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
template <class... Args> |
|
iterator emplace(Args&&... args) |
|
{ return m_tree.emplace_equal(boost::forward<Args>(args)...); } |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t |
|
//! is inserted right before p. |
|
template <class... Args> |
|
iterator emplace_hint(const_iterator hint, Args&&... args) |
|
{ return m_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); } |
|
|
|
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
iterator emplace() |
|
{ return m_tree.emplace_equal(); } |
|
|
|
iterator emplace_hint(const_iterator hint) |
|
{ return m_tree.emplace_hint_equal(hint); } |
|
|
|
#define BOOST_PP_LOCAL_MACRO(n) \ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ |
|
\ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); }\ |
|
//! |
|
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) |
|
#include BOOST_PP_LOCAL_ITERATE() |
|
|
|
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position. |
|
//! |
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately |
|
//! following q prior to the element being erased. If no such element exists, |
|
//! returns end(). |
|
//! |
|
//! <b>Complexity</b>: Amortized constant time |
|
iterator erase(const_iterator position) |
|
{ return m_tree.erase(position); } |
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x. |
|
//! |
|
//! <b>Returns</b>: Returns the number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: log(size()) + count(k) |
|
size_type erase(const key_type& x) |
|
{ return m_tree.erase(x); } |
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last). |
|
//! |
|
//! <b>Returns</b>: Returns last. |
|
//! |
|
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last. |
|
iterator erase(const_iterator first, const_iterator last) |
|
{ return m_tree.erase(first, last); } |
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()). |
|
//! |
|
//! <b>Postcondition</b>: size() == 0. |
|
//! |
|
//! <b>Complexity</b>: linear in size(). |
|
void clear() |
|
{ m_tree.clear(); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator find(const key_type& x) |
|
{ return m_tree.find(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
const_iterator find(const key_type& x) const |
|
{ return m_tree.find(x); } |
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x. |
|
//! |
|
//! <b>Complexity</b>: log(size())+count(k) |
|
size_type count(const key_type& x) const |
|
{ return m_tree.count(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator lower_bound(const key_type& x) |
|
{return m_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator lower_bound(const key_type& x) const |
|
{ return m_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator upper_bound(const key_type& x) |
|
{ return m_tree.upper_bound(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<iterator,iterator> equal_range(const key_type& x) |
|
{ return m_tree.equal_range(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator upper_bound(const key_type& x) const |
|
{ return m_tree.upper_bound(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<const_iterator,const_iterator> |
|
equal_range(const key_type& x) const |
|
{ return m_tree.equal_range(x); } |
|
|
|
/// @cond |
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator== (const multimap<K1, T1, C1, A1>& x, |
|
const multimap<K1, T1, C1, A1>& y); |
|
|
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator< (const multimap<K1, T1, C1, A1>& x, |
|
const multimap<K1, T1, C1, A1>& y); |
|
/// @endcond |
|
}; |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y) |
|
{ return x.m_tree == y.m_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y) |
|
{ return x.m_tree < y.m_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator!=(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y) |
|
{ return !(x == y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y) |
|
{ return y < x; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<=(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y) |
|
{ return !(y < x); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>=(const multimap<Key,T,Pred,A>& x, |
|
const multimap<Key,T,Pred,A>& y) |
|
{ return !(x < y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline void swap(multimap<Key,T,Pred,A>& x, multimap<Key,T,Pred,A>& y) |
|
{ x.swap(y); } |
|
|
|
/// @cond |
|
|
|
} //namespace container { |
|
/* |
|
//!has_trivial_destructor_after_move<> == true_type |
|
//!specialization for optimizations |
|
template <class K, class T, class C, class A> |
|
struct has_trivial_destructor_after_move<boost::container::multimap<K, T, C, A> > |
|
{ |
|
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; |
|
}; |
|
*/ |
|
namespace container { |
|
|
|
/// @endcond |
|
|
|
}} |
|
|
|
#include <boost/container/detail/config_end.hpp> |
|
|
|
#endif /* BOOST_CONTAINERS_MAP_HPP */ |
|
|
|
|