You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1587 lines
40 KiB
1587 lines
40 KiB
#include <glm/integer.hpp> |
|
#include <glm/vector_relational.hpp> |
|
#include <glm/ext/vector_int1.hpp> |
|
#include <glm/ext/vector_int2.hpp> |
|
#include <glm/ext/vector_int3.hpp> |
|
#include <glm/ext/vector_int4.hpp> |
|
#include <glm/ext/vector_uint1.hpp> |
|
#include <glm/ext/vector_uint2.hpp> |
|
#include <glm/ext/vector_uint3.hpp> |
|
#include <glm/ext/vector_uint4.hpp> |
|
#include <glm/ext/scalar_int_sized.hpp> |
|
#include <glm/ext/scalar_uint_sized.hpp> |
|
#include <vector> |
|
#include <ctime> |
|
#include <cstdio> |
|
|
|
enum result |
|
{ |
|
SUCCESS, |
|
FAIL, |
|
ASSERT, |
|
STATIC_ASSERT |
|
}; |
|
|
|
namespace bitfieldInsert |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Base; |
|
genType Insert; |
|
int Offset; |
|
int Bits; |
|
genType Return; |
|
}; |
|
|
|
typedef type<glm::uint> typeU32; |
|
|
|
typeU32 const Data32[] = |
|
{ |
|
{0x00000000, 0xffffffff, 0, 32, 0xffffffff}, |
|
{0x00000000, 0xffffffff, 0, 31, 0x7fffffff}, |
|
{0x00000000, 0xffffffff, 0, 0, 0x00000000}, |
|
{0xff000000, 0x000000ff, 8, 8, 0xff00ff00}, |
|
{0xffff0000, 0xffff0000, 16, 16, 0x00000000}, |
|
{0x0000ffff, 0x0000ffff, 16, 16, 0xffffffff} |
|
}; |
|
|
|
static int test() |
|
{ |
|
int Error = 0; |
|
glm::uint count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(glm::uint i = 0; i < count; ++i) |
|
{ |
|
glm::uint Return = glm::bitfieldInsert( |
|
Data32[i].Base, |
|
Data32[i].Insert, |
|
Data32[i].Offset, |
|
Data32[i].Bits); |
|
|
|
Error += Data32[i].Return == Return ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//bitfieldInsert |
|
|
|
namespace bitfieldExtract |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
int Offset; |
|
int Bits; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
typedef type<glm::uint> typeU32; |
|
|
|
typeU32 const Data32[] = |
|
{ |
|
{0xffffffff, 0,32, 0xffffffff, SUCCESS}, |
|
{0xffffffff, 8, 0, 0x00000000, SUCCESS}, |
|
{0x00000000, 0,32, 0x00000000, SUCCESS}, |
|
{0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS}, |
|
{0x00000000, 8, 0, 0x00000000, SUCCESS}, |
|
{0x80000000,31, 1, 0x00000001, SUCCESS}, |
|
{0x7fffffff,31, 1, 0x00000000, SUCCESS}, |
|
{0x00000300, 8, 8, 0x00000003, SUCCESS}, |
|
{0x0000ff00, 8, 8, 0x000000ff, SUCCESS}, |
|
{0xfffffff0, 0, 5, 0x00000010, SUCCESS}, |
|
{0x000000ff, 1, 3, 0x00000007, SUCCESS}, |
|
{0x000000ff, 0, 3, 0x00000007, SUCCESS}, |
|
{0x00000000, 0, 2, 0x00000000, SUCCESS}, |
|
{0xffffffff, 0, 8, 0x000000ff, SUCCESS}, |
|
{0xffff0000,16,16, 0x0000ffff, SUCCESS}, |
|
{0xfffffff0, 0, 8, 0x00000000, FAIL}, |
|
{0xffffffff,16,16, 0x00000000, FAIL}, |
|
//{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert |
|
//{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert |
|
//{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert |
|
}; |
|
|
|
static int test() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(glm::uint i = 0; i < count; ++i) |
|
{ |
|
glm::uint Return = glm::bitfieldExtract( |
|
Data32[i].Value, |
|
Data32[i].Offset, |
|
Data32[i].Bits); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS && Compare) |
|
continue; |
|
else if(Data32[i].Result == FAIL && !Compare) |
|
continue; |
|
|
|
Error += 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//extractField |
|
|
|
namespace bitfieldReverse |
|
{ |
|
/* |
|
GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v) |
|
{ |
|
unsigned int Result(0); |
|
unsigned int const BitSize = static_cast<unsigned int>(sizeof(unsigned int) * 8); |
|
for(unsigned int i = 0; i < BitSize; ++i) |
|
{ |
|
unsigned int const BitSet(v & (static_cast<unsigned int>(1) << i)); |
|
unsigned int const BitFirst(BitSet >> i); |
|
Result |= BitFirst << (BitSize - 1 - i); |
|
} |
|
return Result; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v) |
|
{ |
|
glm::uint64_t Result(0); |
|
glm::uint64_t const BitSize = static_cast<glm::uint64_t>(sizeof(unsigned int) * 8); |
|
for(glm::uint64_t i = 0; i < BitSize; ++i) |
|
{ |
|
glm::uint64_t const BitSet(v & (static_cast<glm::uint64_t>(1) << i)); |
|
glm::uint64_t const BitFirst(BitSet >> i); |
|
Result |= BitFirst << (BitSize - 1 - i); |
|
} |
|
return Result; |
|
} |
|
*/ |
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> bitfieldReverseLoop(glm::vec<L, T, Q> const& v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values"); |
|
|
|
glm::vec<L, T, Q> Result(0); |
|
T const BitSize = static_cast<T>(sizeof(T) * 8); |
|
for(T i = 0; i < BitSize; ++i) |
|
{ |
|
glm::vec<L, T, Q> const BitSet(v & (static_cast<T>(1) << i)); |
|
glm::vec<L, T, Q> const BitFirst(BitSet >> i); |
|
Result |= BitFirst << (BitSize - 1 - i); |
|
} |
|
return Result; |
|
} |
|
|
|
template<typename T> |
|
GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v) |
|
{ |
|
return bitfieldReverseLoop(glm::vec<1, T>(v)).x; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldReverseUint32(glm::uint32 x) |
|
{ |
|
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1; |
|
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2; |
|
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4; |
|
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8; |
|
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16; |
|
return x; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldReverseUint64(glm::uint64 x) |
|
{ |
|
x = (x & 0x5555555555555555) << 1 | (x & 0xAAAAAAAAAAAAAAAA) >> 1; |
|
x = (x & 0x3333333333333333) << 2 | (x & 0xCCCCCCCCCCCCCCCC) >> 2; |
|
x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x & 0xF0F0F0F0F0F0F0F0) >> 4; |
|
x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8; |
|
x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16; |
|
x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32; |
|
return x; |
|
} |
|
|
|
template<bool EXEC = false> |
|
struct compute_bitfieldReverseStep |
|
{ |
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T, T) |
|
{ |
|
return v; |
|
} |
|
}; |
|
|
|
template<> |
|
struct compute_bitfieldReverseStep<true> |
|
{ |
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T Mask, T Shift) |
|
{ |
|
return (v & Mask) << Shift | (v & (~Mask)) >> Shift; |
|
} |
|
}; |
|
|
|
# if GLM_COMPILER & GLM_COMPILER_VC |
|
# pragma warning(push) |
|
# pragma warning(disable : 4309) |
|
# endif |
|
|
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> bitfieldReverseOps(glm::vec<L, T, Q> const& v) |
|
{ |
|
glm::vec<L, T, Q> x(v); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 2>::call(x, static_cast<T>(0x5555555555555555ull), static_cast<T>( 1)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 4>::call(x, static_cast<T>(0x3333333333333333ull), static_cast<T>( 2)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 8>::call(x, static_cast<T>(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call(x, static_cast<T>(0x00FF00FF00FF00FFull), static_cast<T>( 8)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call(x, static_cast<T>(0x0000FFFF0000FFFFull), static_cast<T>(16)); |
|
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call(x, static_cast<T>(0x00000000FFFFFFFFull), static_cast<T>(32)); |
|
return x; |
|
} |
|
|
|
# if GLM_COMPILER & GLM_COMPILER_VC |
|
# pragma warning(pop) |
|
# endif |
|
|
|
template<typename genType> |
|
GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x) |
|
{ |
|
return bitfieldReverseOps(glm::vec<1, genType, glm::defaultp>(x)).x; |
|
} |
|
|
|
#if GLM_COMPILER & GLM_COMPILER_CLANG |
|
# pragma clang diagnostic push |
|
# pragma clang diagnostic ignored "-Wpadded" |
|
#endif |
|
|
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
#if GLM_COMPILER & GLM_COMPILER_CLANG |
|
# pragma clang diagnostic pop |
|
#endif |
|
|
|
typedef type<glm::uint> typeU32; |
|
|
|
typeU32 const Data32[] = |
|
{ |
|
{0x00000001, 0x80000000, SUCCESS}, |
|
{0x0000000f, 0xf0000000, SUCCESS}, |
|
{0x000000ff, 0xff000000, SUCCESS}, |
|
{0xf0000000, 0x0000000f, SUCCESS}, |
|
{0xff000000, 0x000000ff, SUCCESS}, |
|
{0xffffffff, 0xffffffff, SUCCESS}, |
|
{0x00000000, 0x00000000, SUCCESS} |
|
}; |
|
|
|
typedef type<glm::uint64> typeU64; |
|
|
|
typeU64 const Data64[] = |
|
{ |
|
{0x00000000000000ff, 0xff00000000000000, SUCCESS}, |
|
{0x000000000000000f, 0xf000000000000000, SUCCESS}, |
|
{0xf000000000000000, 0x000000000000000f, SUCCESS}, |
|
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, |
|
{0x0000000000000000, 0x0000000000000000, SUCCESS} |
|
}; |
|
|
|
static int test32_bitfieldReverse() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = glm::bitfieldReverse(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test32_bitfieldReverseLoop() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = bitfieldReverseLoop(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test32_bitfieldReverseUint32() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = bitfieldReverseUint32(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test32_bitfieldReverseOps() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data32) / sizeof(typeU32); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint Return = bitfieldReverseOps(Data32[i].Value); |
|
|
|
bool Compare = Data32[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test64_bitfieldReverse() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test64_bitfieldReverseLoop() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data32[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test64_bitfieldReverseUint64() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test64_bitfieldReverseOps() |
|
{ |
|
int Error = 0; |
|
std::size_t const Count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(std::size_t i = 0; i < Count; ++i) |
|
{ |
|
glm::uint64 Return = bitfieldReverseOps(Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS) |
|
Error += Compare ? 0 : 1; |
|
else |
|
Error += Compare ? 1 : 0; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test32_bitfieldReverse(); |
|
Error += test32_bitfieldReverseLoop(); |
|
Error += test32_bitfieldReverseUint32(); |
|
Error += test32_bitfieldReverseOps(); |
|
|
|
Error += test64_bitfieldReverse(); |
|
Error += test64_bitfieldReverseLoop(); |
|
Error += test64_bitfieldReverseUint64(); |
|
Error += test64_bitfieldReverseOps(); |
|
|
|
return Error; |
|
} |
|
|
|
static int perf32(glm::uint32 Count) |
|
{ |
|
int Error = 0; |
|
|
|
std::vector<glm::uint32> Data; |
|
Data.resize(static_cast<std::size_t>(Count)); |
|
|
|
std::clock_t Timestamps0 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = glm::bitfieldReverse(k); |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseLoop(k); |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseUint32(k); |
|
|
|
std::clock_t Timestamps3 = std::clock(); |
|
|
|
for(glm::uint32 k = 0; k < Count; ++k) |
|
Data[k] = bitfieldReverseOps(k); |
|
|
|
std::clock_t Timestamps4 = std::clock(); |
|
|
|
std::printf("glm::bitfieldReverse: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); |
|
std::printf("bitfieldReverseLoop: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); |
|
std::printf("bitfieldReverseUint32: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); |
|
std::printf("bitfieldReverseOps: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); |
|
|
|
return Error; |
|
} |
|
|
|
static int perf64(glm::uint64 Count) |
|
{ |
|
int Error = 0; |
|
|
|
std::vector<glm::uint64> Data; |
|
Data.resize(static_cast<std::size_t>(Count)); |
|
|
|
std::clock_t Timestamps0 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[static_cast<std::size_t>(k)] = glm::bitfieldReverse(k); |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[static_cast<std::size_t>(k)] = bitfieldReverseLoop<glm::uint64>(k); |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[static_cast<std::size_t>(k)] = bitfieldReverseUint64(k); |
|
|
|
std::clock_t Timestamps3 = std::clock(); |
|
|
|
for(glm::uint64 k = 0; k < Count; ++k) |
|
Data[static_cast<std::size_t>(k)] = bitfieldReverseOps(k); |
|
|
|
std::clock_t Timestamps4 = std::clock(); |
|
|
|
std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); |
|
std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); |
|
std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); |
|
std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); |
|
|
|
return Error; |
|
} |
|
|
|
static int perf(std::size_t Samples) |
|
{ |
|
int Error = 0; |
|
|
|
Error += perf32(static_cast<glm::uint32>(Samples)); |
|
Error += perf64(static_cast<glm::uint64>(Samples)); |
|
|
|
return Error; |
|
} |
|
}//bitfieldReverse |
|
|
|
namespace findMSB |
|
{ |
|
template<typename genType, typename retType> |
|
struct type |
|
{ |
|
genType Value; |
|
retType Return; |
|
}; |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
template<typename genIUType> |
|
static int findMSB_intrinsic(genIUType Value) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); |
|
|
|
if(Value == 0) |
|
return -1; |
|
|
|
unsigned long Result(0); |
|
_BitScanReverse(&Result, Value); |
|
return int(Result); |
|
} |
|
# endif//GLM_HAS_BITSCAN_WINDOWS |
|
|
|
# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC |
|
template<typename genIUType> |
|
static int findMSB_avx(genIUType Value) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); |
|
|
|
if(Value == 0) |
|
return -1; |
|
|
|
return int(_tzcnt_u32(Value)); |
|
} |
|
# endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS |
|
|
|
template<typename genIUType> |
|
static int findMSB_095(genIUType Value) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); |
|
|
|
if(Value == genIUType(0) || Value == genIUType(-1)) |
|
return -1; |
|
else if(Value > 0) |
|
{ |
|
genIUType Bit = genIUType(-1); |
|
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} |
|
return static_cast<int>(Bit); |
|
} |
|
else //if(Value < 0) |
|
{ |
|
int const BitCount(sizeof(genIUType) * 8); |
|
int MostSignificantBit(-1); |
|
for(int BitIndex(0); BitIndex < BitCount; ++BitIndex) |
|
MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex; |
|
assert(MostSignificantBit >= 0); |
|
return MostSignificantBit; |
|
} |
|
} |
|
|
|
template<typename genIUType> |
|
static int findMSB_nlz1(genIUType x) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); |
|
|
|
if (x == 0) |
|
return -1; |
|
|
|
int n = 0; |
|
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;} |
|
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;} |
|
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;} |
|
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;} |
|
if (x <= 0x7FFFFFFF) {n = n + 1;} |
|
return 31 - n; |
|
} |
|
|
|
static int findMSB_nlz2(unsigned int x) |
|
{ |
|
unsigned int y; |
|
int n = 32; |
|
|
|
y = x >>16; if (y != 0) {n = n -16; x = y;} |
|
y = x >> 8; if (y != 0) {n = n - 8; x = y;} |
|
y = x >> 4; if (y != 0) {n = n - 4; x = y;} |
|
y = x >> 2; if (y != 0) {n = n - 2; x = y;} |
|
y = x >> 1; if (y != 0) return n - 2; |
|
return 32 - (n - static_cast<int>(x)); |
|
} |
|
|
|
static int findMSB_pop(unsigned int x) |
|
{ |
|
x = x | (x >> 1); |
|
x = x | (x >> 2); |
|
x = x | (x >> 4); |
|
x = x | (x >> 8); |
|
x = x | (x >>16); |
|
return 31 - glm::bitCount(~x); |
|
} |
|
|
|
static int perf_int(std::size_t Count) |
|
{ |
|
type<int, int> const Data[] = |
|
{ |
|
{0x00000000, -1}, |
|
{0x00000001, 0}, |
|
{0x00000002, 1}, |
|
{0x00000003, 1}, |
|
{0x00000004, 2}, |
|
{0x00000005, 2}, |
|
{0x00000007, 2}, |
|
{0x00000008, 3}, |
|
{0x00000010, 4}, |
|
{0x00000020, 5}, |
|
{0x00000040, 6}, |
|
{0x00000080, 7}, |
|
{0x00000100, 8}, |
|
{0x00000200, 9}, |
|
{0x00000400, 10}, |
|
{0x00000800, 11}, |
|
{0x00001000, 12}, |
|
{0x00002000, 13}, |
|
{0x00004000, 14}, |
|
{0x00008000, 15}, |
|
{0x00010000, 16}, |
|
{0x00020000, 17}, |
|
{0x00040000, 18}, |
|
{0x00080000, 19}, |
|
{0x00100000, 20}, |
|
{0x00200000, 21}, |
|
{0x00400000, 22}, |
|
{0x00800000, 23}, |
|
{0x01000000, 24}, |
|
{0x02000000, 25}, |
|
{0x04000000, 26}, |
|
{0x08000000, 27}, |
|
{0x10000000, 28}, |
|
{0x20000000, 29}, |
|
{0x40000000, 30} |
|
}; |
|
|
|
int Error(0); |
|
|
|
std::clock_t Timestamps0 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = glm::findMSB(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = findMSB_nlz1(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = findMSB_nlz2(static_cast<unsigned int>(Data[i].Value)); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps3 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = findMSB_095(static_cast<unsigned int>(Data[i].Value)); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps4 = std::clock(); |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = findMSB_intrinsic(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
# endif//GLM_HAS_BITSCAN_WINDOWS |
|
|
|
std::clock_t Timestamps5 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = findMSB_pop(static_cast<unsigned int>(Data[i].Value)); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps6 = std::clock(); |
|
|
|
# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC |
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) |
|
{ |
|
int Result = findMSB_avx(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps7 = std::clock(); |
|
# endif |
|
|
|
std::printf("glm::findMSB: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); |
|
std::printf("findMSB - nlz1: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); |
|
std::printf("findMSB - nlz2: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); |
|
std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
std::printf("findMSB - intrinsics: %d clocks\n", static_cast<int>(Timestamps5 - Timestamps4)); |
|
# endif//GLM_HAS_BITSCAN_WINDOWS |
|
std::printf("findMSB - pop: %d clocks\n", static_cast<int>(Timestamps6 - Timestamps5)); |
|
|
|
# if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC |
|
std::printf("findMSB - avx tzcnt: %d clocks\n", static_cast<int>(Timestamps7 - Timestamps6)); |
|
# endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS |
|
|
|
return Error; |
|
} |
|
|
|
static int test_ivec4() |
|
{ |
|
type<glm::ivec4, glm::ivec4> const Data[] = |
|
{ |
|
{glm::ivec4(0x00000000), glm::ivec4(-1)}, |
|
{glm::ivec4(0x00000001), glm::ivec4( 0)}, |
|
{glm::ivec4(0x00000002), glm::ivec4( 1)}, |
|
{glm::ivec4(0x00000003), glm::ivec4( 1)}, |
|
{glm::ivec4(0x00000004), glm::ivec4( 2)}, |
|
{glm::ivec4(0x00000005), glm::ivec4( 2)}, |
|
{glm::ivec4(0x00000007), glm::ivec4( 2)}, |
|
{glm::ivec4(0x00000008), glm::ivec4( 3)}, |
|
{glm::ivec4(0x00000010), glm::ivec4( 4)}, |
|
{glm::ivec4(0x00000020), glm::ivec4( 5)}, |
|
{glm::ivec4(0x00000040), glm::ivec4( 6)}, |
|
{glm::ivec4(0x00000080), glm::ivec4( 7)}, |
|
{glm::ivec4(0x00000100), glm::ivec4( 8)}, |
|
{glm::ivec4(0x00000200), glm::ivec4( 9)}, |
|
{glm::ivec4(0x00000400), glm::ivec4(10)}, |
|
{glm::ivec4(0x00000800), glm::ivec4(11)}, |
|
{glm::ivec4(0x00001000), glm::ivec4(12)}, |
|
{glm::ivec4(0x00002000), glm::ivec4(13)}, |
|
{glm::ivec4(0x00004000), glm::ivec4(14)}, |
|
{glm::ivec4(0x00008000), glm::ivec4(15)}, |
|
{glm::ivec4(0x00010000), glm::ivec4(16)}, |
|
{glm::ivec4(0x00020000), glm::ivec4(17)}, |
|
{glm::ivec4(0x00040000), glm::ivec4(18)}, |
|
{glm::ivec4(0x00080000), glm::ivec4(19)}, |
|
{glm::ivec4(0x00100000), glm::ivec4(20)}, |
|
{glm::ivec4(0x00200000), glm::ivec4(21)}, |
|
{glm::ivec4(0x00400000), glm::ivec4(22)}, |
|
{glm::ivec4(0x00800000), glm::ivec4(23)}, |
|
{glm::ivec4(0x01000000), glm::ivec4(24)}, |
|
{glm::ivec4(0x02000000), glm::ivec4(25)}, |
|
{glm::ivec4(0x04000000), glm::ivec4(26)}, |
|
{glm::ivec4(0x08000000), glm::ivec4(27)}, |
|
{glm::ivec4(0x10000000), glm::ivec4(28)}, |
|
{glm::ivec4(0x20000000), glm::ivec4(29)}, |
|
{glm::ivec4(0x40000000), glm::ivec4(30)} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::ivec4, glm::ivec4>); ++i) |
|
{ |
|
glm::ivec4 Result0 = glm::findMSB(Data[i].Value); |
|
Error += glm::all(glm::equal(Data[i].Return, Result0)) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test_int() |
|
{ |
|
typedef type<glm::uint, int> entry; |
|
|
|
entry const Data[] = |
|
{ |
|
{0x00000000, -1}, |
|
{0x00000001, 0}, |
|
{0x00000002, 1}, |
|
{0x00000003, 1}, |
|
{0x00000004, 2}, |
|
{0x00000005, 2}, |
|
{0x00000007, 2}, |
|
{0x00000008, 3}, |
|
{0x00000010, 4}, |
|
{0x00000020, 5}, |
|
{0x00000040, 6}, |
|
{0x00000080, 7}, |
|
{0x00000100, 8}, |
|
{0x00000200, 9}, |
|
{0x00000400, 10}, |
|
{0x00000800, 11}, |
|
{0x00001000, 12}, |
|
{0x00002000, 13}, |
|
{0x00004000, 14}, |
|
{0x00008000, 15}, |
|
{0x00010000, 16}, |
|
{0x00020000, 17}, |
|
{0x00040000, 18}, |
|
{0x00080000, 19}, |
|
{0x00100000, 20}, |
|
{0x00200000, 21}, |
|
{0x00400000, 22}, |
|
{0x00800000, 23}, |
|
{0x01000000, 24}, |
|
{0x02000000, 25}, |
|
{0x04000000, 26}, |
|
{0x08000000, 27}, |
|
{0x10000000, 28}, |
|
{0x20000000, 29}, |
|
{0x40000000, 30} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) |
|
{ |
|
int Result0 = glm::findMSB(Data[i].Value); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) |
|
{ |
|
int Result0 = findMSB_nlz1(Data[i].Value); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
} |
|
/* |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) |
|
{ |
|
int Result0 = findMSB_nlz2(Data[i].Value); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
} |
|
*/ |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) |
|
{ |
|
int Result0 = findMSB_095(Data[i].Value); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
} |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) |
|
{ |
|
int Result0 = findMSB_intrinsic(Data[i].Value); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
} |
|
# endif//GLM_HAS_BITSCAN_WINDOWS |
|
|
|
for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) |
|
{ |
|
int Result0 = findMSB_pop(Data[i].Value); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_ivec4(); |
|
Error += test_int(); |
|
|
|
return Error; |
|
} |
|
|
|
static int perf(std::size_t Samples) |
|
{ |
|
int Error(0); |
|
|
|
Error += perf_int(Samples); |
|
|
|
return Error; |
|
} |
|
}//findMSB |
|
|
|
namespace findLSB |
|
{ |
|
template<typename genType, typename retType> |
|
struct type |
|
{ |
|
genType Value; |
|
retType Return; |
|
}; |
|
|
|
typedef type<int, int> entry; |
|
|
|
entry const DataI32[] = |
|
{ |
|
{0x00000001, 0}, |
|
{0x00000003, 0}, |
|
{0x00000002, 1}, |
|
// {0x80000000, 31}, // Clang generates an error with this |
|
{0x00010000, 16}, |
|
{0x7FFF0000, 16}, |
|
{0x7F000000, 24}, |
|
{0x7F00FF00, 8}, |
|
{0x00000000, -1} |
|
}; |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
template<typename genIUType> |
|
static int findLSB_intrinsic(genIUType Value) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); |
|
|
|
if(Value == 0) |
|
return -1; |
|
|
|
unsigned long Result(0); |
|
_BitScanForward(&Result, Value); |
|
return int(Result); |
|
} |
|
# endif |
|
|
|
template<typename genIUType> |
|
static int findLSB_095(genIUType Value) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); |
|
if(Value == 0) |
|
return -1; |
|
|
|
genIUType Bit; |
|
for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){} |
|
return Bit; |
|
} |
|
|
|
template<typename genIUType> |
|
static int findLSB_ntz2(genIUType x) |
|
{ |
|
if(x == 0) |
|
return -1; |
|
|
|
return glm::bitCount(~x & (x - static_cast<genIUType>(1))); |
|
} |
|
|
|
template<typename genIUType> |
|
static int findLSB_branchfree(genIUType x) |
|
{ |
|
bool IsNull(x == 0); |
|
int const Keep(!IsNull); |
|
int const Discard(IsNull); |
|
|
|
return static_cast<int>(glm::bitCount(~x & (x - static_cast<genIUType>(1)))) * Keep + Discard * -1; |
|
} |
|
|
|
static int test_int() |
|
{ |
|
int Error(0); |
|
|
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = glm::findLSB(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_095(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_intrinsic(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
# endif |
|
|
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_ntz2(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_branchfree(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_int(); |
|
|
|
return Error; |
|
} |
|
|
|
static int perf_int(std::size_t Count) |
|
{ |
|
int Error(0); |
|
|
|
std::clock_t Timestamps0 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = glm::findLSB(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps1 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_095(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps2 = std::clock(); |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_intrinsic(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
# endif |
|
|
|
std::clock_t Timestamps3 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_ntz2(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps4 = std::clock(); |
|
|
|
for(std::size_t k = 0; k < Count; ++k) |
|
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) |
|
{ |
|
int Result = findLSB_branchfree(DataI32[i].Value); |
|
Error += DataI32[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
std::clock_t Timestamps5 = std::clock(); |
|
|
|
std::printf("glm::findLSB: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); |
|
std::printf("findLSB - 0.9.5: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); |
|
|
|
# if GLM_HAS_BITSCAN_WINDOWS |
|
std::printf("findLSB - intrinsics: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); |
|
# endif |
|
|
|
std::printf("findLSB - ntz2: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); |
|
std::printf("findLSB - branchfree: %d clocks\n", static_cast<int>(Timestamps5 - Timestamps4)); |
|
|
|
return Error; |
|
} |
|
|
|
static int perf(std::size_t Samples) |
|
{ |
|
int Error(0); |
|
|
|
Error += perf_int(Samples); |
|
|
|
return Error; |
|
} |
|
}//findLSB |
|
|
|
namespace uaddCarry |
|
{ |
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::uint x = std::numeric_limits<glm::uint>::max(); |
|
glm::uint y = 0; |
|
glm::uint Carry = 0; |
|
glm::uint Result = glm::uaddCarry(x, y, Carry); |
|
|
|
Error += Carry == 0 ? 0 : 1; |
|
Error += Result == std::numeric_limits<glm::uint>::max() ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uint x = std::numeric_limits<glm::uint>::max(); |
|
glm::uint y = 1; |
|
glm::uint Carry = 0; |
|
glm::uint Result = glm::uaddCarry(x, y, Carry); |
|
|
|
Error += Carry == 1 ? 0 : 1; |
|
Error += Result == 0 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(std::numeric_limits<glm::uint>::max()); |
|
glm::uvec1 y(0); |
|
glm::uvec1 Carry(0); |
|
glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); |
|
|
|
Error += glm::all(glm::equal(Carry, glm::uvec1(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec1(std::numeric_limits<glm::uint>::max()))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(std::numeric_limits<glm::uint>::max()); |
|
glm::uvec1 y(1); |
|
glm::uvec1 Carry(0); |
|
glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); |
|
|
|
Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec1(0))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace uaddCarry |
|
|
|
namespace usubBorrow |
|
{ |
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::uint x = 16; |
|
glm::uint y = 17; |
|
glm::uint Borrow = 0; |
|
glm::uint Result = glm::usubBorrow(x, y, Borrow); |
|
|
|
Error += Borrow == 1 ? 0 : 1; |
|
Error += Result == 1 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(16); |
|
glm::uvec1 y(17); |
|
glm::uvec1 Borrow(0); |
|
glm::uvec1 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec2 x(16); |
|
glm::uvec2 y(17); |
|
glm::uvec2 Borrow(0); |
|
glm::uvec2 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec3 x(16); |
|
glm::uvec3 y(17); |
|
glm::uvec3 Borrow(0); |
|
glm::uvec3 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec4 x(16); |
|
glm::uvec4 y(17); |
|
glm::uvec4 Borrow(0); |
|
glm::uvec4 Result(glm::usubBorrow(x, y, Borrow)); |
|
|
|
Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1; |
|
Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace usubBorrow |
|
|
|
namespace umulExtended |
|
{ |
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::uint x = 2; |
|
glm::uint y = 3; |
|
glm::uint msb = 0; |
|
glm::uint lsb = 0; |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += msb == 0 ? 0 : 1; |
|
Error += lsb == 6 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec1 x(2); |
|
glm::uvec1 y(3); |
|
glm::uvec1 msb(0); |
|
glm::uvec1 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec2 x(2); |
|
glm::uvec2 y(3); |
|
glm::uvec2 msb(0); |
|
glm::uvec2 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec3 x(2); |
|
glm::uvec3 y(3); |
|
glm::uvec3 msb(0); |
|
glm::uvec3 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::uvec4 x(2); |
|
glm::uvec4 y(3); |
|
glm::uvec4 msb(0); |
|
glm::uvec4 lsb(0); |
|
glm::umulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace umulExtended |
|
|
|
namespace imulExtended |
|
{ |
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
int x = 2; |
|
int y = 3; |
|
int msb = 0; |
|
int lsb = 0; |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += msb == 0 ? 0 : 1; |
|
Error += lsb == 6 ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec1 x(2); |
|
glm::ivec1 y(3); |
|
glm::ivec1 msb(0); |
|
glm::ivec1 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec2 x(2); |
|
glm::ivec2 y(3); |
|
glm::ivec2 msb(0); |
|
glm::ivec2 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec3 x(2); |
|
glm::ivec3 y(3); |
|
glm::ivec3 msb(0); |
|
glm::ivec3 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::ivec4 x(2); |
|
glm::ivec4 y(3); |
|
glm::ivec4 msb(0); |
|
glm::ivec4 lsb(0); |
|
glm::imulExtended(x, y, msb, lsb); |
|
|
|
Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1; |
|
Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
}//namespace imulExtended |
|
|
|
namespace bitCount |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
type<int> const DataI32[] = |
|
{ |
|
{0x00000001, 1}, |
|
{0x00000003, 2}, |
|
{0x00000002, 1}, |
|
{0x7fffffff, 31}, |
|
{0x00000000, 0} |
|
}; |
|
|
|
template<typename T> |
|
inline int bitCount_if(T v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); |
|
|
|
int Count(0); |
|
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) |
|
{ |
|
if(v & static_cast<T>(1 << i)) |
|
++Count; |
|
} |
|
return Count; |
|
} |
|
|
|
template<typename T> |
|
inline int bitCount_vec(T v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); |
|
|
|
int Count(0); |
|
for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) |
|
{ |
|
Count += static_cast<int>((v >> i) & static_cast<T>(1)); |
|
} |
|
return Count; |
|
} |
|
|
|
template<bool EXEC = false> |
|
struct compute_bitfieldBitCountStep |
|
{ |
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T, T) |
|
{ |
|
return v; |
|
} |
|
}; |
|
|
|
template<> |
|
struct compute_bitfieldBitCountStep<true> |
|
{ |
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T Mask, T Shift) |
|
{ |
|
return (v & Mask) + ((v >> Shift) & Mask); |
|
} |
|
}; |
|
|
|
# if GLM_COMPILER & GLM_COMPILER_VC |
|
# pragma warning(push) |
|
# pragma warning(disable : 4309) |
|
# endif |
|
|
|
template<glm::length_t L, typename T, glm::qualifier Q> |
|
static glm::vec<L, int, Q> bitCount_bitfield(glm::vec<L, T, Q> const& v) |
|
{ |
|
glm::vec<L, typename glm::detail::make_unsigned<T>::type, Q> x(v); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 2>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x5555555555555555ull), static_cast<typename glm::detail::make_unsigned<T>::type>( 1)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 4>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x3333333333333333ull), static_cast<typename glm::detail::make_unsigned<T>::type>( 2)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 8>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x0F0F0F0F0F0F0F0Full), static_cast<typename glm::detail::make_unsigned<T>::type>( 4)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 16>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x00FF00FF00FF00FFull), static_cast<typename glm::detail::make_unsigned<T>::type>( 8)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 32>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x0000FFFF0000FFFFull), static_cast<typename glm::detail::make_unsigned<T>::type>(16)); |
|
x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 64>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x00000000FFFFFFFFull), static_cast<typename glm::detail::make_unsigned<T>::type>(32)); |
|
return glm::vec<L, int, Q>(x); |
|
} |
|
|
|
# if GLM_COMPILER & GLM_COMPILER_VC |
|
# pragma warning(pop) |
|
# endif |
|
|
|
template<typename genType> |
|
static int bitCount_bitfield(genType x) |
|
{ |
|
return bitCount_bitfield(glm::vec<1, genType, glm::defaultp>(x)).x; |
|
} |
|
|
|
static int perf(std::size_t Size) |
|
{ |
|
int Error(0); |
|
|
|
std::vector<int> v; |
|
v.resize(Size); |
|
|
|
std::vector<glm::ivec4> w; |
|
w.resize(Size); |
|
|
|
|
|
std::clock_t TimestampsA = std::clock(); |
|
|
|
// bitCount - TimeIf |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = bitCount_if(static_cast<int>(i)); |
|
} |
|
|
|
std::clock_t TimestampsB = std::clock(); |
|
|
|
// bitCount - TimeVec |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = bitCount_vec(i); |
|
} |
|
|
|
std::clock_t TimestampsC = std::clock(); |
|
|
|
// bitCount - TimeDefault |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = glm::bitCount(i); |
|
} |
|
|
|
std::clock_t TimestampsD = std::clock(); |
|
|
|
// bitCount - TimeVec4 |
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
w[i] = glm::bitCount(glm::ivec4(static_cast<int>(i))); |
|
} |
|
|
|
std::clock_t TimestampsE = std::clock(); |
|
|
|
{ |
|
for(std::size_t i = 0, n = v.size(); i < n; ++i) |
|
v[i] = bitCount_bitfield(static_cast<int>(i)); |
|
} |
|
|
|
std::clock_t TimestampsF = std::clock(); |
|
|
|
std::printf("bitCount - TimeIf %d\n", static_cast<int>(TimestampsB - TimestampsA)); |
|
std::printf("bitCount - TimeVec %d\n", static_cast<int>(TimestampsC - TimestampsB)); |
|
std::printf("bitCount - TimeDefault %d\n", static_cast<int>(TimestampsD - TimestampsC)); |
|
std::printf("bitCount - TimeVec4 %d\n", static_cast<int>(TimestampsE - TimestampsD)); |
|
std::printf("bitCount - bitfield %d\n", static_cast<int>(TimestampsF - TimestampsE)); |
|
|
|
return Error; |
|
} |
|
|
|
static int test() |
|
{ |
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
int ResultA = glm::bitCount(DataI32[i].Value); |
|
Error += DataI32[i].Return == ResultA ? 0 : 1; |
|
assert(!Error); |
|
|
|
int ResultB = bitCount_if(DataI32[i].Value); |
|
Error += DataI32[i].Return == ResultB ? 0 : 1; |
|
assert(!Error); |
|
|
|
int ResultC = bitCount_vec(DataI32[i].Value); |
|
Error += DataI32[i].Return == ResultC ? 0 : 1; |
|
assert(!Error); |
|
|
|
int ResultE = bitCount_bitfield(DataI32[i].Value); |
|
Error += DataI32[i].Return == ResultE ? 0 : 1; |
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
}//bitCount |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
|
|
Error += ::bitCount::test(); |
|
Error += ::bitfieldReverse::test(); |
|
Error += ::findMSB::test(); |
|
Error += ::findLSB::test(); |
|
Error += ::umulExtended::test(); |
|
Error += ::imulExtended::test(); |
|
Error += ::uaddCarry::test(); |
|
Error += ::usubBorrow::test(); |
|
Error += ::bitfieldInsert::test(); |
|
Error += ::bitfieldExtract::test(); |
|
|
|
# ifdef NDEBUG |
|
std::size_t const Samples = 1000; |
|
# else |
|
std::size_t const Samples = 1; |
|
# endif |
|
|
|
::bitCount::perf(Samples); |
|
::bitfieldReverse::perf(Samples); |
|
::findMSB::perf(Samples); |
|
::findLSB::perf(Samples); |
|
|
|
return Error; |
|
}
|
|
|