/////////////////////////////////////////////////////////////////////////////////////////////////// // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /////////////////////////////////////////////////////////////////////////////////////////////////// // Created : 2011-01-15 // Updated : 2011-09-13 // Licence : This source is under MIT licence // File : test/core/func_common.cpp /////////////////////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include int test_floor() { int Error(0); { float A(1.1f); float B = glm::floor(A); } { double A(1.1f); double B = glm::floor(A); } { glm::vec1 A(1.1f); glm::vec1 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::vec1(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec1 A(1.1f); glm::dvec1 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::dvec1(1.0), 0.0001)) ? 0 : 1; } { glm::vec2 A(1.1f); glm::vec2 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::vec2(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec2 A(1.1f); glm::dvec2 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::dvec2(1.0), 0.0001)) ? 0 : 1; } { glm::vec3 A(1.1f); glm::vec3 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::vec3(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec3 A(1.1f); glm::dvec3 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::dvec3(1.0), 0.0001)) ? 0 : 1; } { glm::vec4 A(1.1f); glm::vec4 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::vec4(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec4 A(1.1f); glm::dvec4 B = glm::floor(A); Error += glm::all(glm::epsilonEqual(B, glm::dvec4(1.0), 0.0001)) ? 0 : 1; } return Error; } int test_modf() { int Error(0); { float X(1.5f); float I(0.0f); float A = glm::modf(X, I); Error += I == 1.0f ? 0 : 1; Error += A == 0.5f ? 0 : 1; } { glm::vec4 X(1.1f, 1.2f, 1.5f, 1.7f); glm::vec4 I(0.0f); glm::vec4 A = glm::modf(X, I); Error += I == glm::vec4(1.0f) ? 0 : 1; Error += glm::all(glm::epsilonEqual(A, glm::vec4(0.1f, 0.2f, 0.5f, 0.7f), 0.00001f)) ? 0 : 1; } { glm::dvec4 X(1.1, 1.2, 1.5, 1.7); glm::dvec4 I(0.0); glm::dvec4 A = glm::modf(X, I); Error += I == glm::dvec4(1.0) ? 0 : 1; Error += glm::all(glm::epsilonEqual(A, glm::dvec4(0.1, 0.2, 0.5, 0.7), 0.000000001)) ? 0 : 1; } { double X(1.5); double I(0.0); double A = glm::modf(X, I); Error += I == 1.0 ? 0 : 1; Error += A == 0.5 ? 0 : 1; } return Error; } int test_floatBitsToInt() { int Error = 0; { float A = 1.0f; int B = glm::floatBitsToInt(A); float C = glm::intBitsToFloat(B); int D = *(int*)&A; Error += B == D ? 0 : 1; Error += A == C ? 0 : 1; } { glm::vec2 A(1.0f, 2.0f); glm::ivec2 B = glm::floatBitsToInt(A); glm::vec2 C = glm::intBitsToFloat(B); Error += B.x == *(int*)&(A.x) ? 0 : 1; Error += B.y == *(int*)&(A.y) ? 0 : 1; Error += A == C? 0 : 1; } { glm::vec3 A(1.0f, 2.0f, 3.0f); glm::ivec3 B = glm::floatBitsToInt(A); glm::vec3 C = glm::intBitsToFloat(B); Error += B.x == *(int*)&(A.x) ? 0 : 1; Error += B.y == *(int*)&(A.y) ? 0 : 1; Error += B.z == *(int*)&(A.z) ? 0 : 1; Error += A == C? 0 : 1; } { glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f); glm::ivec4 B = glm::floatBitsToInt(A); glm::vec4 C = glm::intBitsToFloat(B); Error += B.x == *(int*)&(A.x) ? 0 : 1; Error += B.y == *(int*)&(A.y) ? 0 : 1; Error += B.z == *(int*)&(A.z) ? 0 : 1; Error += B.w == *(int*)&(A.w) ? 0 : 1; Error += A == C? 0 : 1; } return Error; } int test_floatBitsToUint() { int Error = 0; { float A = 1.0f; glm::uint B = glm::floatBitsToUint(A); float C = glm::intBitsToFloat(B); Error += B == *(glm::uint*)&A ? 0 : 1; Error += A == C? 0 : 1; } { glm::vec2 A(1.0f, 2.0f); glm::uvec2 B = glm::floatBitsToUint(A); glm::vec2 C = glm::uintBitsToFloat(B); Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1; Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1; Error += A == C ? 0 : 1; } { glm::vec3 A(1.0f, 2.0f, 3.0f); glm::uvec3 B = glm::floatBitsToUint(A); glm::vec3 C = glm::uintBitsToFloat(B); Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1; Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1; Error += B.z == *(glm::uint*)&(A.z) ? 0 : 1; Error += A == C? 0 : 1; } { glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f); glm::uvec4 B = glm::floatBitsToUint(A); glm::vec4 C = glm::uintBitsToFloat(B); Error += B.x == *(glm::uint*)&(A.x) ? 0 : 1; Error += B.y == *(glm::uint*)&(A.y) ? 0 : 1; Error += B.z == *(glm::uint*)&(A.z) ? 0 : 1; Error += B.w == *(glm::uint*)&(A.w) ? 0 : 1; Error += A == C? 0 : 1; } return Error; } int test_min() { int Error = 0; glm::vec1 A0 = glm::min(glm::vec1(1), glm::vec1(1)); glm::vec2 B0 = glm::min(glm::vec2(1), glm::vec2(1)); glm::vec2 B1 = glm::min(glm::vec2(1), 1.0f); bool B2 = glm::all(glm::equal(B0, B1)); Error += B2 ? 0 : 1; glm::vec3 C0 = glm::min(glm::vec3(1), glm::vec3(1)); glm::vec3 C1 = glm::min(glm::vec3(1), 1.0f); bool C2 = glm::all(glm::equal(C0, C1)); Error += C2 ? 0 : 1; glm::vec4 D0 = glm::min(glm::vec4(1), glm::vec4(1)); glm::vec4 D1 = glm::min(glm::vec4(1), 1.0f); bool D2 = glm::all(glm::equal(D0, D1)); Error += D2 ? 0 : 1; return Error; } int test_max() { int Error = 0; glm::vec1 A0 = glm::max(glm::vec1(1), glm::vec1(1)); glm::vec2 B0 = glm::max(glm::vec2(1), glm::vec2(1)); glm::vec2 B1 = glm::max(glm::vec2(1), 1.0f); bool B2 = glm::all(glm::equal(B0, B1)); Error += B2 ? 0 : 1; glm::vec3 C0 = glm::max(glm::vec3(1), glm::vec3(1)); glm::vec3 C1 = glm::max(glm::vec3(1), 1.0f); bool C2 = glm::all(glm::equal(C0, C1)); Error += C2 ? 0 : 1; glm::vec4 D0 = glm::max(glm::vec4(1), glm::vec4(1)); glm::vec4 D1 = glm::max(glm::vec4(1), 1.0f); bool D2 = glm::all(glm::equal(D0, D1)); Error += D2 ? 0 : 1; return Error; } int test_clamp() { int Error = 0; return Error; } namespace test_mix { template struct test { T x; T y; B a; T Result; }; test TestBool[] = { {0.0f, 1.0f, false, 0.0f}, {0.0f, 1.0f, true, 1.0f}, {-1.0f, 1.0f, false, -1.0f}, {-1.0f, 1.0f, true, 1.0f} }; test TestFloat[] = { {0.0f, 1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, 0.0f, -1.0f}, {-1.0f, 1.0f, 1.0f, 1.0f} }; test TestVec2Bool[] = { {glm::vec2(0.0f), glm::vec2(1.0f), false, glm::vec2(0.0f)}, {glm::vec2(0.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), false, glm::vec2(-1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)} }; test TestBVec2[] = { {glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(0.0f)}, {glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(-1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true, false), glm::vec2(1.0f, -1.0f)} }; test TestVec3Bool[] = { {glm::vec3(0.0f), glm::vec3(1.0f), false, glm::vec3(0.0f)}, {glm::vec3(0.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), false, glm::vec3(-1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)} }; test TestBVec3[] = { {glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(0.0f)}, {glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(-1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)}, {glm::vec3(1.0f, 2.0f, 3.0f), glm::vec3(4.0f, 5.0f, 6.0f), glm::bvec3(true, false, true), glm::vec3(4.0f, 2.0f, 6.0f)} }; test TestVec4Bool[] = { {glm::vec4(0.0f), glm::vec4(1.0f), false, glm::vec4(0.0f)}, {glm::vec4(0.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), false, glm::vec4(-1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)} }; test TestBVec4[] = { {glm::vec4(0.0f), glm::vec4(1.0f), glm::bvec4(false), glm::vec4(0.0f)}, {glm::vec4(0.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(false), glm::vec4(-1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)}, {glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(5.0f, 6.0f, 7.0f, 8.0f), glm::bvec4(true, false, true, false), glm::vec4(5.0f, 2.0f, 7.0f, 4.0f)} }; int run() { int Error = 0; // Float with bool { for(std::size_t i = 0; i < sizeof(TestBool) / sizeof(test); ++i) { float Result = glm::mix(TestBool[i].x, TestBool[i].y, TestBool[i].a); Error += glm::epsilonEqual(Result, TestBool[i].Result, glm::epsilon()) ? 0 : 1; } } // Float with float { for(std::size_t i = 0; i < sizeof(TestFloat) / sizeof(test); ++i) { float Result = glm::mix(TestFloat[i].x, TestFloat[i].y, TestFloat[i].a); Error += glm::epsilonEqual(Result, TestFloat[i].Result, glm::epsilon()) ? 0 : 1; } } // vec2 with bool { for(std::size_t i = 0; i < sizeof(TestVec2Bool) / sizeof(test); ++i) { glm::vec2 Result = glm::mix(TestVec2Bool[i].x, TestVec2Bool[i].y, TestVec2Bool[i].a); Error += glm::epsilonEqual(Result.x, TestVec2Bool[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.y, TestVec2Bool[i].Result.y, glm::epsilon()) ? 0 : 1; } } // vec2 with bvec2 { for(std::size_t i = 0; i < sizeof(TestBVec2) / sizeof(test); ++i) { glm::vec2 Result = glm::mix(TestBVec2[i].x, TestBVec2[i].y, TestBVec2[i].a); Error += glm::epsilonEqual(Result.x, TestBVec2[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.y, TestBVec2[i].Result.y, glm::epsilon()) ? 0 : 1; } } // vec3 with bool { for(std::size_t i = 0; i < sizeof(TestVec3Bool) / sizeof(test); ++i) { glm::vec3 Result = glm::mix(TestVec3Bool[i].x, TestVec3Bool[i].y, TestVec3Bool[i].a); Error += glm::epsilonEqual(Result.x, TestVec3Bool[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.y, TestVec3Bool[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.z, TestVec3Bool[i].Result.z, glm::epsilon()) ? 0 : 1; } } // vec3 with bvec3 { for(std::size_t i = 0; i < sizeof(TestBVec3) / sizeof(test); ++i) { glm::vec3 Result = glm::mix(TestBVec3[i].x, TestBVec3[i].y, TestBVec3[i].a); Error += glm::epsilonEqual(Result.x, TestBVec3[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.y, TestBVec3[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.z, TestBVec3[i].Result.z, glm::epsilon()) ? 0 : 1; } } // vec4 with bool { for(std::size_t i = 0; i < sizeof(TestVec4Bool) / sizeof(test); ++i) { glm::vec4 Result = glm::mix(TestVec4Bool[i].x, TestVec4Bool[i].y, TestVec4Bool[i].a); Error += glm::epsilonEqual(Result.x, TestVec4Bool[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.y, TestVec4Bool[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.z, TestVec4Bool[i].Result.z, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.w, TestVec4Bool[i].Result.w, glm::epsilon()) ? 0 : 1; } } // vec4 with bvec4 { for(std::size_t i = 0; i < sizeof(TestBVec4) / sizeof(test); ++i) { glm::vec4 Result = glm::mix(TestBVec4[i].x, TestBVec4[i].y, TestBVec4[i].a); Error += glm::epsilonEqual(Result.x, TestBVec4[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.y, TestBVec4[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.z, TestBVec4[i].Result.z, glm::epsilon()) ? 0 : 1; Error += glm::epsilonEqual(Result.w, TestBVec4[i].Result.w, glm::epsilon()) ? 0 : 1; } } return Error; } }//namespace test_mix namespace test_step { template struct test { EDGE edge; VEC x; VEC result; }; test TestVec4Scalar [] = { { 0.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, { 1.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, { 0.0f, glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(0.0f) } }; test TestVec4Vector [] = { { glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(-2.0f, -3.0f, -4.0f, -5.0f), glm::vec4(0.0f) }, { glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, { glm::vec4( 2.0f, 3.0f, 4.0f, 5.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(0.0f) }, { glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4(-1.0f,-2.0f,-3.0f,-4.0f), glm::vec4(0.0f) } }; int run() { int Error = 0; // vec4 and float { for (std::size_t i = 0; i < sizeof(TestVec4Scalar) / sizeof(test); ++i) { glm::vec4 Result = glm::step(TestVec4Scalar[i].edge, TestVec4Scalar[i].x); Error += glm::all(glm::epsilonEqual(Result, TestVec4Scalar[i].result, glm::epsilon())) ? 0 : 1; } } // vec4 and vec4 { for (std::size_t i = 0; i < sizeof(TestVec4Vector) / sizeof(test); ++i) { glm::vec4 Result = glm::step(TestVec4Vector[i].edge, TestVec4Vector[i].x); Error += glm::all(glm::epsilonEqual(Result, TestVec4Vector[i].result, glm::epsilon())) ? 0 : 1; } } return Error; } }//namespace test_step int test_round() { int Error = 0; { float A = glm::round(0.0f); Error += A == 0.0f ? 0 : 1; float B = glm::round(0.5f); Error += B == 1.0f ? 0 : 1; float C = glm::round(1.0f); Error += C == 1.0f ? 0 : 1; float D = glm::round(0.1f); Error += D == 0.0f ? 0 : 1; float E = glm::round(0.9f); Error += E == 1.0f ? 0 : 1; float F = glm::round(1.5f); Error += F == 2.0f ? 0 : 1; float G = glm::round(1.9f); Error += G == 2.0f ? 0 : 1; } { float A = glm::round(-0.0f); Error += A == 0.0f ? 0 : 1; float B = glm::round(-0.5f); Error += B == -1.0f ? 0 : 1; float C = glm::round(-1.0f); Error += C == -1.0f ? 0 : 1; float D = glm::round(-0.1f); Error += D == 0.0f ? 0 : 1; float E = glm::round(-0.9f); Error += E == -1.0f ? 0 : 1; float F = glm::round(-1.5f); Error += F == -2.0f ? 0 : 1; float G = glm::round(-1.9f); Error += G == -2.0f ? 0 : 1; } return Error; } int test_roundEven() { int Error = 0; { float A1 = glm::roundEven(-1.5f); Error += glm::epsilonEqual(A1, -2.0f, 0.0001f) ? 0 : 1; float A2 = glm::roundEven(1.5f); Error += glm::epsilonEqual(A2, 2.0f, 0.0001f) ? 0 : 1; float A5 = glm::roundEven(-2.5f); Error += glm::epsilonEqual(A5, -2.0f, 0.0001f) ? 0 : 1; float A6 = glm::roundEven(2.5f); Error += glm::epsilonEqual(A6, 2.0f, 0.0001f) ? 0 : 1; float A3 = glm::roundEven(-3.5f); Error += glm::epsilonEqual(A3, -4.0f, 0.0001f) ? 0 : 1; float A4 = glm::roundEven(3.5f); Error += glm::epsilonEqual(A4, 4.0f, 0.0001f) ? 0 : 1; float C7 = glm::roundEven(-4.5f); Error += glm::epsilonEqual(C7, -4.0f, 0.0001f) ? 0 : 1; float C8 = glm::roundEven(4.5f); Error += glm::epsilonEqual(C8, 4.0f, 0.0001f) ? 0 : 1; float C1 = glm::roundEven(-5.5f); Error += glm::epsilonEqual(C1, -6.0f, 0.0001f) ? 0 : 1; float C2 = glm::roundEven(5.5f); Error += glm::epsilonEqual(C2, 6.0f, 0.0001f) ? 0 : 1; float C3 = glm::roundEven(-6.5f); Error += glm::epsilonEqual(C3, -6.0f, 0.0001f) ? 0 : 1; float C4 = glm::roundEven(6.5f); Error += glm::epsilonEqual(C4, 6.0f, 0.0001f) ? 0 : 1; float C5 = glm::roundEven(-7.5f); Error += glm::epsilonEqual(C5, -8.0f, 0.0001f) ? 0 : 1; float C6 = glm::roundEven(7.5f); Error += glm::epsilonEqual(C6, 8.0f, 0.0001f) ? 0 : 1; Error += 0; } { float A7 = glm::roundEven(-2.4f); Error += glm::epsilonEqual(A7, -2.0f, 0.0001f) ? 0 : 1; float A8 = glm::roundEven(2.4f); Error += glm::epsilonEqual(A8, 2.0f, 0.0001f) ? 0 : 1; float B1 = glm::roundEven(-2.6f); Error += glm::epsilonEqual(B1, -3.0f, 0.0001f) ? 0 : 1; float B2 = glm::roundEven(2.6f); Error += glm::epsilonEqual(B2, 3.0f, 0.0001f) ? 0 : 1; float B3 = glm::roundEven(-2.0f); Error += glm::epsilonEqual(B3, -2.0f, 0.0001f) ? 0 : 1; float B4 = glm::roundEven(2.0f); Error += glm::epsilonEqual(B4, 2.0f, 0.0001f) ? 0 : 1; Error += 0; } { float A = glm::roundEven(0.0f); Error += A == 0.0f ? 0 : 1; float B = glm::roundEven(0.5f); Error += B == 0.0f ? 0 : 1; float C = glm::roundEven(1.0f); Error += C == 1.0f ? 0 : 1; float D = glm::roundEven(0.1f); Error += D == 0.0f ? 0 : 1; float E = glm::roundEven(0.9f); Error += E == 1.0f ? 0 : 1; float F = glm::roundEven(1.5f); Error += F == 2.0f ? 0 : 1; float G = glm::roundEven(1.9f); Error += G == 2.0f ? 0 : 1; } { float A = glm::roundEven(-0.0f); Error += A == 0.0f ? 0 : 1; float B = glm::roundEven(-0.5f); Error += B == -0.0f ? 0 : 1; float C = glm::roundEven(-1.0f); Error += C == -1.0f ? 0 : 1; float D = glm::roundEven(-0.1f); Error += D == 0.0f ? 0 : 1; float E = glm::roundEven(-0.9f); Error += E == -1.0f ? 0 : 1; float F = glm::roundEven(-1.5f); Error += F == -2.0f ? 0 : 1; float G = glm::roundEven(-1.9f); Error += G == -2.0f ? 0 : 1; } { float A = glm::roundEven(1.5f); Error += A == 2.0f ? 0 : 1; float B = glm::roundEven(2.5f); Error += B == 2.0f ? 0 : 1; float C = glm::roundEven(3.5f); Error += C == 4.0f ? 0 : 1; float D = glm::roundEven(4.5f); Error += D == 4.0f ? 0 : 1; float E = glm::roundEven(5.5f); Error += E == 6.0f ? 0 : 1; float F = glm::roundEven(6.5f); Error += F == 6.0f ? 0 : 1; float G = glm::roundEven(7.5f); Error += G == 8.0f ? 0 : 1; } { float A = glm::roundEven(-1.5f); Error += A == -2.0f ? 0 : 1; float B = glm::roundEven(-2.5f); Error += B == -2.0f ? 0 : 1; float C = glm::roundEven(-3.5f); Error += C == -4.0f ? 0 : 1; float D = glm::roundEven(-4.5f); Error += D == -4.0f ? 0 : 1; float E = glm::roundEven(-5.5f); Error += E == -6.0f ? 0 : 1; float F = glm::roundEven(-6.5f); Error += F == -6.0f ? 0 : 1; float G = glm::roundEven(-7.5f); Error += G == -8.0f ? 0 : 1; } return Error; } int test_isnan() { int Error = 0; float Zero_f = 0.0; double Zero_d = 0.0; { Error += true == glm::isnan(0.0/Zero_d) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::dvec2(0.0 / Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::dvec3(0.0 / Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::dvec4(0.0 / Zero_d))) ? 0 : 1; } { Error += true == glm::isnan(0.0f/Zero_f) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::vec2(0.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::vec3(0.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::vec4(0.0f/Zero_f))) ? 0 : 1; } return Error; } int test_isinf() { int Error = 0; float Zero_f = 0.0; double Zero_d = 0.0; { Error += true == glm::isinf( 1.0/Zero_d) ? 0 : 1; Error += true == glm::isinf(-1.0/Zero_d) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec2( 1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec2(-1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec3( 1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec3(-1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec4( 1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec4(-1.0/Zero_d))) ? 0 : 1; } { Error += true == glm::isinf( 1.0f/Zero_f) ? 0 : 1; Error += true == glm::isinf(-1.0f/Zero_f) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec2( 1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec2(-1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec3( 1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec3(-1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec4( 1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec4(-1.0f/Zero_f))) ? 0 : 1; } return Error; } namespace sign { template GLM_FUNC_QUALIFIER genFIType sign_if(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_iec559 || (std::numeric_limits::is_signed && std::numeric_limits::is_integer), "'sign' only accept signed inputs"); genFIType result; if(x > genFIType(0)) result = genFIType(1); else if(x < genFIType(0)) result = genFIType(-1); else result = genFIType(0); return result; } template GLM_FUNC_QUALIFIER genFIType sign_alu1(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return (x >> 31) | ((unsigned)-x >> 31); } template GLM_FUNC_QUALIFIER genFIType sign_alu2(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return -((unsigned)x >> 31) | (-(unsigned)x >> 31); } template GLM_FUNC_QUALIFIER genFIType sign_sub(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return ((unsigned)-x >> 31) - ((unsigned)x >> 31); } template GLM_FUNC_QUALIFIER genFIType sign_cmp(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return (x > 0) - (x < 0); } template struct type { genType Value; genType Return; }; int test_int32() { type const Data[] = { { 0, 0}, { 1, 1}, { 2, 1}, { 3, 1}, {-1,-1}, {-2,-1}, {-3,-1} }; int Error = 0; for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_cmp(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_if(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_alu1(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_alu2(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_sub(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += test_int32(); return Error; } int perf_rand() { int Error = 0; std::size_t const Count = 1000000000; std::vector Input, Output; Input.resize(Count); Output.resize(Count); for(std::size_t i = 0; i < Count; ++i) Input[i] = static_cast(glm::linearRand(-65536.f, 65536.f)); std::clock_t Timestamp0 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_cmp(Input[i]); std::clock_t Timestamp1 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_if(Input[i]); std::clock_t Timestamp2 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu1(Input[i]); std::clock_t Timestamp3 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu2(Input[i]); std::clock_t Timestamp4 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_sub(Input[i]); std::clock_t Timestamp5 = std::clock(); std::printf("sign_cmp(rand) Time %d clocks\n", Timestamp1 - Timestamp0); std::printf("sign_if(rand) Time %d clocks\n", Timestamp2 - Timestamp1); std::printf("sign_alu1(rand) Time %d clocks\n", Timestamp3 - Timestamp2); std::printf("sign_alu2(rand) Time %d clocks\n", Timestamp4 - Timestamp3); std::printf("sign_sub(rand) Time %d clocks\n", Timestamp5 - Timestamp4); return Error; } int perf_linear() { int Error = 0; std::size_t const Count = 1000000000; std::vector Input, Output; Input.resize(Count); Output.resize(Count); for(std::size_t i = 0; i < Count; ++i) Input[i] = static_cast(i); std::clock_t Timestamp0 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_cmp(Input[i]); std::clock_t Timestamp1 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_if(Input[i]); std::clock_t Timestamp2 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu1(Input[i]); std::clock_t Timestamp3 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu2(Input[i]); std::clock_t Timestamp4 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_sub(Input[i]); std::clock_t Timestamp5 = std::clock(); std::printf("sign_cmp(linear) Time %d clocks\n", Timestamp1 - Timestamp0); std::printf("sign_if(linear) Time %d clocks\n", Timestamp2 - Timestamp1); std::printf("sign_alu1(linear) Time %d clocks\n", Timestamp3 - Timestamp2); std::printf("sign_alu2(linear) Time %d clocks\n", Timestamp4 - Timestamp3); std::printf("sign_sub(linear) Time %d clocks\n", Timestamp5 - Timestamp4); return Error; } int perf_linear_cal() { int Error = 0; glm::uint32 const Count = 1000000000; std::clock_t Timestamp0 = std::clock(); glm::int32 Sum = 0; for(glm::int32 i = 1; i < Count; ++i) Sum += sign_cmp(i); std::clock_t Timestamp1 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_if(i); std::clock_t Timestamp2 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_alu1(i); std::clock_t Timestamp3 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_alu2(i); std::clock_t Timestamp4 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_sub(i); std::clock_t Timestamp5 = std::clock(); std::printf("Sum %d\n", Sum); std::printf("sign_cmp(linear_cal) Time %d clocks\n", Timestamp1 - Timestamp0); std::printf("sign_if(linear_cal) Time %d clocks\n", Timestamp2 - Timestamp1); std::printf("sign_alu1(linear_cal) Time %d clocks\n", Timestamp3 - Timestamp2); std::printf("sign_alu2(linear_cal) Time %d clocks\n", Timestamp4 - Timestamp3); std::printf("sign_sub(linear_cal) Time %d clocks\n", Timestamp5 - Timestamp4); return Error; } int perf() { int Error(0); Error += perf_linear_cal(); Error += perf_linear(); Error += perf_rand(); return Error; } }//namespace sign int main() { int Error(0); Error += sign::test(); Error += sign::perf(); Error += test_floor(); Error += test_modf(); Error += test_floatBitsToInt(); Error += test_floatBitsToUint(); Error += test_step::run(); Error += test_max(); Error += test_min(); Error += test_mix::run(); Error += test_round(); Error += test_roundEven(); Error += test_isnan(); Error += test_isinf(); return Error; }