#define GLM_FORCE_EXPLICIT_CTOR #include #include #include #include #include #include #include #include #include #include #include #include #include #include // This file has divisions by zero to test isnan #if GLM_COMPILER & GLM_COMPILER_VC # pragma warning(push) # pragma warning(disable : 4723) #endif namespace floor_ { static int test() { int Error = 0; { float A = 1.1f; float B = glm::floor(A); Error += glm::equal(B, 1.f, 0.0001f) ? 0 : 1; } { double A = 1.1; double B = glm::floor(A); Error += glm::equal(B, 1.0, 0.0001) ? 0 : 1; } { glm::vec1 A(1.1f); glm::vec1 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::vec1(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec1 A(1.1); glm::dvec1 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::dvec1(1.0), 0.0001)) ? 0 : 1; } { glm::vec2 A(1.1f); glm::vec2 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::vec2(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec2 A(1.1); glm::dvec2 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::dvec2(1.0), 0.0001)) ? 0 : 1; } { glm::vec3 A(1.1f); glm::vec3 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::vec3(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec3 A(1.1); glm::dvec3 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::dvec3(1.0), 0.0001)) ? 0 : 1; } { glm::vec4 A(1.1f); glm::vec4 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::vec4(1.0), 0.0001f)) ? 0 : 1; } { glm::dvec4 A(1.1); glm::dvec4 B = glm::floor(A); Error += glm::all(glm::equal(B, glm::dvec4(1.0), 0.0001)) ? 0 : 1; } return Error; } }//namespace floor namespace modf_ { static int test() { int Error(0); { float X(1.5f); float I(0.0f); float A = glm::modf(X, I); Error += glm::equal(I, 1.0f, 0.0001f) ? 0 : 1; Error += glm::equal(A, 0.5f, 0.0001f) ? 0 : 1; } { glm::vec4 X(1.1f, 1.2f, 1.5f, 1.7f); glm::vec4 I(0.0f); glm::vec4 A = glm::modf(X, I); Error += glm::ivec4(I) == glm::ivec4(1) ? 0 : 1; Error += glm::all(glm::equal(A, glm::vec4(0.1f, 0.2f, 0.5f, 0.7f), 0.00001f)) ? 0 : 1; } { glm::dvec4 X(1.1, 1.2, 1.5, 1.7); glm::dvec4 I(0.0); glm::dvec4 A = glm::modf(X, I); Error += glm::ivec4(I) == glm::ivec4(1) ? 0 : 1; Error += glm::all(glm::equal(A, glm::dvec4(0.1, 0.2, 0.5, 0.7), 0.000000001)) ? 0 : 1; } { double X(1.5); double I(0.0); double A = glm::modf(X, I); Error += glm::equal(I, 1.0, 0.0001) ? 0 : 1; Error += glm::equal(A, 0.5, 0.0001) ? 0 : 1; } return Error; } }//namespace modf namespace mod_ { static int test() { int Error(0); { float A(1.5f); float B(1.0f); float C = glm::mod(A, B); Error += glm::equal(C, 0.5f, 0.00001f) ? 0 : 1; } { float A(-0.2f); float B(1.0f); float C = glm::mod(A, B); Error += glm::equal(C, 0.8f, 0.00001f) ? 0 : 1; } { float A(3.0); float B(2.0f); float C = glm::mod(A, B); Error += glm::equal(C, 1.0f, 0.00001f) ? 0 : 1; } { glm::vec4 A(3.0); float B(2.0f); glm::vec4 C = glm::mod(A, B); Error += glm::all(glm::equal(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; } { glm::vec4 A(3.0); glm::vec4 B(2.0f); glm::vec4 C = glm::mod(A, B); Error += glm::all(glm::equal(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; } return Error; } }//namespace mod_ namespace floatBitsToInt { static int test() { int Error = 0; { float A = 1.0f; int B = glm::floatBitsToInt(A); float C = glm::intBitsToFloat(B); Error += glm::equal(A, C, 0.0001f) ? 0 : 1; } { glm::vec2 A(1.0f, 2.0f); glm::ivec2 B = glm::floatBitsToInt(A); glm::vec2 C = glm::intBitsToFloat(B); Error += glm::all(glm::equal(A, C, 0.0001f)) ? 0 : 1; } { glm::vec3 A(1.0f, 2.0f, 3.0f); glm::ivec3 B = glm::floatBitsToInt(A); glm::vec3 C = glm::intBitsToFloat(B); Error += glm::all(glm::equal(A, C, 0.0001f)) ? 0 : 1; } { glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f); glm::ivec4 B = glm::floatBitsToInt(A); glm::vec4 C = glm::intBitsToFloat(B); Error += glm::all(glm::equal(A, C, 0.0001f)) ? 0 : 1; } return Error; } }//namespace floatBitsToInt namespace floatBitsToUint { static int test() { int Error = 0; { float A = 1.0f; glm::uint B = glm::floatBitsToUint(A); float C = glm::uintBitsToFloat(B); Error += glm::equal(A, C, 0.0001f) ? 0 : 1; } { glm::vec2 A(1.0f, 2.0f); glm::uvec2 B = glm::floatBitsToUint(A); glm::vec2 C = glm::uintBitsToFloat(B); Error += glm::all(glm::equal(A, C, 0.0001f)) ? 0 : 1; } { glm::vec3 A(1.0f, 2.0f, 3.0f); glm::uvec3 B = glm::floatBitsToUint(A); glm::vec3 C = glm::uintBitsToFloat(B); Error += glm::all(glm::equal(A, C, 0.0001f)) ? 0 : 1; } { glm::vec4 A(1.0f, 2.0f, 3.0f, 4.0f); glm::uvec4 B = glm::floatBitsToUint(A); glm::vec4 C = glm::uintBitsToFloat(B); Error += glm::all(glm::equal(A, C, 0.0001f)) ? 0 : 1; } return Error; } }//namespace floatBitsToUint namespace min_ { static int test() { int Error = 0; glm::vec1 A0 = glm::min(glm::vec1(1), glm::vec1(1)); bool A1 = glm::all(glm::equal(A0, glm::vec1(1), glm::epsilon())); Error += A1 ? 0 : 1; glm::vec2 B0 = glm::min(glm::vec2(1), glm::vec2(1)); glm::vec2 B1 = glm::min(glm::vec2(1), 1.0f); bool B2 = glm::all(glm::equal(B0, B1, glm::epsilon())); Error += B2 ? 0 : 1; glm::vec3 C0 = glm::min(glm::vec3(1), glm::vec3(1)); glm::vec3 C1 = glm::min(glm::vec3(1), 1.0f); bool C2 = glm::all(glm::equal(C0, C1, glm::epsilon())); Error += C2 ? 0 : 1; glm::vec4 D0 = glm::min(glm::vec4(1), glm::vec4(1)); glm::vec4 D1 = glm::min(glm::vec4(1), 1.0f); bool D2 = glm::all(glm::equal(D0, D1, glm::epsilon())); Error += D2 ? 0 : 1; return Error; } static int min_tern(int a, int b) { return a < b ? a : b; } static int min_int(int x, int y) { return y ^ ((x ^ y) & -(x < y)); } static int perf(std::size_t Count) { std::vector A(Count); std::vector B(Count); std::size_t const InternalCount = 200000; for(std::size_t i = 0; i < Count; ++i) { A[i] = glm::linearRand(-1000, 1000); B[i] = glm::linearRand(-1000, 1000); } int Error = 0; glm::int32 SumA = 0; { std::clock_t Timestamp0 = std::clock(); for (std::size_t j = 0; j < InternalCount; ++j) for (std::size_t i = 0; i < Count; ++i) SumA += min_tern(A[i], B[i]); std::clock_t Timestamp1 = std::clock(); std::printf("min_tern Time %d clocks\n", static_cast(Timestamp1 - Timestamp0)); } glm::int32 SumB = 0; { std::clock_t Timestamp0 = std::clock(); for (std::size_t j = 0; j < InternalCount; ++j) for (std::size_t i = 0; i < Count; ++i) SumB += min_int(A[i], B[i]); std::clock_t Timestamp1 = std::clock(); std::printf("min_int Time %d clocks\n", static_cast(Timestamp1 - Timestamp0)); } Error += SumA == SumB ? 0 : 1; return Error; } }//namespace min_ namespace max_ { static int test() { int Error = 0; glm::vec1 A0 = glm::max(glm::vec1(1), glm::vec1(1)); bool A1 = glm::all(glm::equal(A0, glm::vec1(1), glm::epsilon())); Error += A1 ? 0 : 1; glm::vec2 B0 = glm::max(glm::vec2(1), glm::vec2(1)); glm::vec2 B1 = glm::max(glm::vec2(1), 1.0f); bool B2 = glm::all(glm::equal(B0, B1, glm::epsilon())); Error += B2 ? 0 : 1; glm::vec3 C0 = glm::max(glm::vec3(1), glm::vec3(1)); glm::vec3 C1 = glm::max(glm::vec3(1), 1.0f); bool C2 = glm::all(glm::equal(C0, C1, glm::epsilon())); Error += C2 ? 0 : 1; glm::vec4 D0 = glm::max(glm::vec4(1), glm::vec4(1)); glm::vec4 D1 = glm::max(glm::vec4(1), 1.0f); bool D2 = glm::all(glm::equal(D0, D1, glm::epsilon())); Error += D2 ? 0 : 1; return Error; } }//namespace max_ namespace clamp_ { static int test() { int Error = 0; return Error; } }//namespace clamp_ namespace mix_ { #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wpadded" #endif template struct entry { T x; T y; B a; T Result; }; #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop #endif #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wglobal-constructors" #endif static entry const TestBool[] = { {0.0f, 1.0f, false, 0.0f}, {0.0f, 1.0f, true, 1.0f}, {-1.0f, 1.0f, false, -1.0f}, {-1.0f, 1.0f, true, 1.0f} }; static entry const TestFloat[] = { {0.0f, 1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, 0.0f, -1.0f}, {-1.0f, 1.0f, 1.0f, 1.0f} }; static entry const TestVec2Bool[] = { {glm::vec2(0.0f), glm::vec2(1.0f), false, glm::vec2(0.0f)}, {glm::vec2(0.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), false, glm::vec2(-1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), true, glm::vec2(1.0f)} }; static entry const TestBVec2[] = { {glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(0.0f)}, {glm::vec2(0.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(false), glm::vec2(-1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true), glm::vec2(1.0f)}, {glm::vec2(-1.0f), glm::vec2(1.0f), glm::bvec2(true, false), glm::vec2(1.0f, -1.0f)} }; static entry const TestVec3Bool[] = { {glm::vec3(0.0f), glm::vec3(1.0f), false, glm::vec3(0.0f)}, {glm::vec3(0.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), false, glm::vec3(-1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), true, glm::vec3(1.0f)} }; static entry const TestBVec3[] = { {glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(0.0f)}, {glm::vec3(0.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(false), glm::vec3(-1.0f)}, {glm::vec3(-1.0f), glm::vec3(1.0f), glm::bvec3(true), glm::vec3(1.0f)}, {glm::vec3(1.0f, 2.0f, 3.0f), glm::vec3(4.0f, 5.0f, 6.0f), glm::bvec3(true, false, true), glm::vec3(4.0f, 2.0f, 6.0f)} }; static entry const TestVec4Bool[] = { {glm::vec4(0.0f), glm::vec4(1.0f), false, glm::vec4(0.0f)}, {glm::vec4(0.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), false, glm::vec4(-1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), true, glm::vec4(1.0f)} }; static entry const TestBVec4[] = { {glm::vec4(0.0f, 0.0f, 1.0f, 1.0f), glm::vec4(2.0f, 2.0f, 3.0f, 3.0f), glm::bvec4(false, true, false, true), glm::vec4(0.0f, 2.0f, 1.0f, 3.0f)}, {glm::vec4(0.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(false), glm::vec4(-1.0f)}, {glm::vec4(-1.0f), glm::vec4(1.0f), glm::bvec4(true), glm::vec4(1.0f)}, {glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(5.0f, 6.0f, 7.0f, 8.0f), glm::bvec4(true, false, true, false), glm::vec4(5.0f, 2.0f, 7.0f, 4.0f)} }; #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop #endif static int test() { int Error = 0; // Float with bool { for(std::size_t i = 0; i < sizeof(TestBool) / sizeof(entry); ++i) { float Result = glm::mix(TestBool[i].x, TestBool[i].y, TestBool[i].a); Error += glm::equal(Result, TestBool[i].Result, glm::epsilon()) ? 0 : 1; } } // Float with float { for(std::size_t i = 0; i < sizeof(TestFloat) / sizeof(entry); ++i) { float Result = glm::mix(TestFloat[i].x, TestFloat[i].y, TestFloat[i].a); Error += glm::equal(Result, TestFloat[i].Result, glm::epsilon()) ? 0 : 1; } } // vec2 with bool { for(std::size_t i = 0; i < sizeof(TestVec2Bool) / sizeof(entry); ++i) { glm::vec2 Result = glm::mix(TestVec2Bool[i].x, TestVec2Bool[i].y, TestVec2Bool[i].a); Error += glm::equal(Result.x, TestVec2Bool[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.y, TestVec2Bool[i].Result.y, glm::epsilon()) ? 0 : 1; } } // vec2 with bvec2 { for(std::size_t i = 0; i < sizeof(TestBVec2) / sizeof(entry); ++i) { glm::vec2 Result = glm::mix(TestBVec2[i].x, TestBVec2[i].y, TestBVec2[i].a); Error += glm::equal(Result.x, TestBVec2[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.y, TestBVec2[i].Result.y, glm::epsilon()) ? 0 : 1; } } // vec3 with bool { for(std::size_t i = 0; i < sizeof(TestVec3Bool) / sizeof(entry); ++i) { glm::vec3 Result = glm::mix(TestVec3Bool[i].x, TestVec3Bool[i].y, TestVec3Bool[i].a); Error += glm::equal(Result.x, TestVec3Bool[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.y, TestVec3Bool[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.z, TestVec3Bool[i].Result.z, glm::epsilon()) ? 0 : 1; } } // vec3 with bvec3 { for(std::size_t i = 0; i < sizeof(TestBVec3) / sizeof(entry); ++i) { glm::vec3 Result = glm::mix(TestBVec3[i].x, TestBVec3[i].y, TestBVec3[i].a); Error += glm::equal(Result.x, TestBVec3[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.y, TestBVec3[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.z, TestBVec3[i].Result.z, glm::epsilon()) ? 0 : 1; } } // vec4 with bool { for(std::size_t i = 0; i < sizeof(TestVec4Bool) / sizeof(entry); ++i) { glm::vec4 Result = glm::mix(TestVec4Bool[i].x, TestVec4Bool[i].y, TestVec4Bool[i].a); Error += glm::equal(Result.x, TestVec4Bool[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.y, TestVec4Bool[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.z, TestVec4Bool[i].Result.z, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.w, TestVec4Bool[i].Result.w, glm::epsilon()) ? 0 : 1; } } // vec4 with bvec4 { for(std::size_t i = 0; i < sizeof(TestBVec4) / sizeof(entry); ++i) { glm::vec4 Result = glm::mix(TestBVec4[i].x, TestBVec4[i].y, TestBVec4[i].a); Error += glm::equal(Result.x, TestBVec4[i].Result.x, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.y, TestBVec4[i].Result.y, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.z, TestBVec4[i].Result.z, glm::epsilon()) ? 0 : 1; Error += glm::equal(Result.w, TestBVec4[i].Result.w, glm::epsilon()) ? 0 : 1; } } return Error; } }//namespace mix_ namespace step_ { template struct entry { EDGE edge; VEC x; VEC result; }; #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wglobal-constructors" #endif static const entry TestVec4Scalar [] = { { 1.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, { 0.0f, glm::vec4(1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, { 0.0f, glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(0.0f) } }; static const entry TestVec4Vector [] = { { glm::vec4(-1.0f, -2.0f, -3.0f, -4.0f), glm::vec4(-2.0f, -3.0f, -4.0f, -5.0f), glm::vec4(0.0f) }, { glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(1.0f) }, { glm::vec4( 2.0f, 3.0f, 4.0f, 5.0f), glm::vec4( 1.0f, 2.0f, 3.0f, 4.0f), glm::vec4(0.0f) }, { glm::vec4( 0.0f, 1.0f, 2.0f, 3.0f), glm::vec4(-1.0f,-2.0f,-3.0f,-4.0f), glm::vec4(0.0f) } }; #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop #endif static int test() { int Error = 0; // scalar { float const Edge = 2.0f; float const A = glm::step(Edge, 1.0f); Error += glm::equal(A, 0.0f, glm::epsilon()) ? 0 : 1; float const B = glm::step(Edge, 3.0f); Error += glm::equal(B, 1.0f, glm::epsilon()) ? 0 : 1; float const C = glm::step(Edge, 2.0f); Error += glm::equal(C, 1.0f, glm::epsilon()) ? 0 : 1; } // vec4 and float { for (std::size_t i = 0; i < sizeof(TestVec4Scalar) / sizeof(entry); ++i) { glm::vec4 Result = glm::step(TestVec4Scalar[i].edge, TestVec4Scalar[i].x); Error += glm::all(glm::equal(Result, TestVec4Scalar[i].result, glm::epsilon())) ? 0 : 1; } } // vec4 and vec4 { for (std::size_t i = 0; i < sizeof(TestVec4Vector) / sizeof(entry); ++i) { glm::vec4 Result = glm::step(TestVec4Vector[i].edge, TestVec4Vector[i].x); Error += glm::all(glm::equal(Result, TestVec4Vector[i].result, glm::epsilon())) ? 0 : 1; } } return Error; } }//namespace step_ namespace smoothstep_ { static int test() { int Error = 0; float const Edge = 2.0f; // scalar { float const A = glm::smoothstep(0.0f, Edge, 1.0f); Error += glm::equal(A, 0.5f, glm::epsilon()) ? 0 : 1; float const B = glm::smoothstep(0.0f, Edge, 1.0f); Error += glm::equal(B, 0.5f, glm::epsilon()) ? 0 : 1; float const C = glm::smoothstep(0.0f, Edge, 1.0f); Error += glm::equal(C, 0.5f, glm::epsilon()) ? 0 : 1; } // vec4 and float { glm::vec4 Result = glm::smoothstep(0.0f, Edge, glm::vec4(1.0f)); Error += glm::all(glm::equal(Result, glm::vec4(0.5f), glm::epsilon())) ? 0 : 1; } // vec4 and vec4 { glm::vec4 Result = glm::smoothstep(glm::vec4(0.0f), glm::vec4(Edge), glm::vec4(1.0f)); Error += glm::all(glm::equal(Result, glm::vec4(0.5f), glm::epsilon())) ? 0 : 1; } return Error; } }//namespace smoothstep_ namespace round_ { static int test() { int Error = 0; { float A = glm::round(0.0f); Error += glm::equal(A, 0.0f, glm::epsilon()) ? 0 : 1; float B = glm::round(0.5f); Error += (glm::equal(B, 1.0f, glm::epsilon()) || glm::equal(B, 0.0f, glm::epsilon())) ? 0 : 1; float C = glm::round(1.0f); Error += glm::equal(C, 1.0f, glm::epsilon()) ? 0 : 1; float D = glm::round(0.1f); Error += glm::equal(D, 0.0f, glm::epsilon()) ? 0 : 1; float E = glm::round(0.9f); Error += glm::equal(E, 1.0f, glm::epsilon()) ? 0 : 1; float F = glm::round(1.5f); Error += glm::equal(F, 2.0f, glm::epsilon()) ? 0 : 1; float G = glm::round(1.9f); Error += glm::equal(G, 2.0f, glm::epsilon()) ? 0 : 1; } { float A = glm::round(-0.0f); Error += glm::equal(A, 0.0f, glm::epsilon()) ? 0 : 1; float B = glm::round(-0.5f); Error += (glm::equal(B, -1.0f, glm::epsilon()) || glm::equal(B, 0.0f, glm::epsilon())) ? 0 : 1; float C = glm::round(-1.0f); Error += glm::equal(C, -1.0f, glm::epsilon()) ? 0 : 1; float D = glm::round(-0.1f); Error += glm::equal(D, 0.0f, glm::epsilon()) ? 0 : 1; float E = glm::round(-0.9f); Error += glm::equal(E, -1.0f, glm::epsilon()) ? 0 : 1; float F = glm::round(-1.5f); Error += glm::equal(F, -2.0f, glm::epsilon()) ? 0 : 1; float G = glm::round(-1.9f); Error += glm::equal(G, -2.0f, glm::epsilon()) ? 0 : 1; } return Error; } }//namespace round_ namespace roundEven { static int test() { int Error = 0; { float A1 = glm::roundEven(-1.5f); Error += glm::equal(A1, -2.0f, 0.0001f) ? 0 : 1; float A2 = glm::roundEven(1.5f); Error += glm::equal(A2, 2.0f, 0.0001f) ? 0 : 1; float A5 = glm::roundEven(-2.5f); Error += glm::equal(A5, -2.0f, 0.0001f) ? 0 : 1; float A6 = glm::roundEven(2.5f); Error += glm::equal(A6, 2.0f, 0.0001f) ? 0 : 1; float A3 = glm::roundEven(-3.5f); Error += glm::equal(A3, -4.0f, 0.0001f) ? 0 : 1; float A4 = glm::roundEven(3.5f); Error += glm::equal(A4, 4.0f, 0.0001f) ? 0 : 1; float C7 = glm::roundEven(-4.5f); Error += glm::equal(C7, -4.0f, 0.0001f) ? 0 : 1; float C8 = glm::roundEven(4.5f); Error += glm::equal(C8, 4.0f, 0.0001f) ? 0 : 1; float C1 = glm::roundEven(-5.5f); Error += glm::equal(C1, -6.0f, 0.0001f) ? 0 : 1; float C2 = glm::roundEven(5.5f); Error += glm::equal(C2, 6.0f, 0.0001f) ? 0 : 1; float C3 = glm::roundEven(-6.5f); Error += glm::equal(C3, -6.0f, 0.0001f) ? 0 : 1; float C4 = glm::roundEven(6.5f); Error += glm::equal(C4, 6.0f, 0.0001f) ? 0 : 1; float C5 = glm::roundEven(-7.5f); Error += glm::equal(C5, -8.0f, 0.0001f) ? 0 : 1; float C6 = glm::roundEven(7.5f); Error += glm::equal(C6, 8.0f, 0.0001f) ? 0 : 1; Error += 0; } { float A7 = glm::roundEven(-2.4f); Error += glm::equal(A7, -2.0f, 0.0001f) ? 0 : 1; float A8 = glm::roundEven(2.4f); Error += glm::equal(A8, 2.0f, 0.0001f) ? 0 : 1; float B1 = glm::roundEven(-2.6f); Error += glm::equal(B1, -3.0f, 0.0001f) ? 0 : 1; float B2 = glm::roundEven(2.6f); Error += glm::equal(B2, 3.0f, 0.0001f) ? 0 : 1; float B3 = glm::roundEven(-2.0f); Error += glm::equal(B3, -2.0f, 0.0001f) ? 0 : 1; float B4 = glm::roundEven(2.0f); Error += glm::equal(B4, 2.0f, 0.0001f) ? 0 : 1; Error += 0; } { float A = glm::roundEven(0.0f); Error += glm::equal(A, 0.0f, glm::epsilon()) ? 0 : 1; float B = glm::roundEven(0.5f); Error += glm::equal(B, 0.0f, glm::epsilon()) ? 0 : 1; float C = glm::roundEven(1.0f); Error += glm::equal(C, 1.0f, glm::epsilon()) ? 0 : 1; float D = glm::roundEven(0.1f); Error += glm::equal(D, 0.0f, glm::epsilon()) ? 0 : 1; float E = glm::roundEven(0.9f); Error += glm::equal(E, 1.0f, glm::epsilon()) ? 0 : 1; float F = glm::roundEven(1.5f); Error += glm::equal(F, 2.0f, glm::epsilon()) ? 0 : 1; float G = glm::roundEven(1.9f); Error += glm::equal(G, 2.0f, glm::epsilon()) ? 0 : 1; } { float A = glm::roundEven(-0.0f); Error += glm::equal(A, 0.0f, glm::epsilon()) ? 0 : 1; float B = glm::roundEven(-0.5f); Error += glm::equal(B, -0.0f, glm::epsilon()) ? 0 : 1; float C = glm::roundEven(-1.0f); Error += glm::equal(C, -1.0f, glm::epsilon()) ? 0 : 1; float D = glm::roundEven(-0.1f); Error += glm::equal(D, 0.0f, glm::epsilon()) ? 0 : 1; float E = glm::roundEven(-0.9f); Error += glm::equal(E, -1.0f, glm::epsilon()) ? 0 : 1; float F = glm::roundEven(-1.5f); Error += glm::equal(F, -2.0f, glm::epsilon()) ? 0 : 1; float G = glm::roundEven(-1.9f); Error += glm::equal(G, -2.0f, glm::epsilon()) ? 0 : 1; } { float A = glm::roundEven(1.5f); Error += glm::equal(A, 2.0f, glm::epsilon()) ? 0 : 1; float B = glm::roundEven(2.5f); Error += glm::equal(B, 2.0f, glm::epsilon()) ? 0 : 1; float C = glm::roundEven(3.5f); Error += glm::equal(C, 4.0f, glm::epsilon()) ? 0 : 1; float D = glm::roundEven(4.5f); Error += glm::equal(D, 4.0f, glm::epsilon()) ? 0 : 1; float E = glm::roundEven(5.5f); Error += glm::equal(E, 6.0f, glm::epsilon()) ? 0 : 1; float F = glm::roundEven(6.5f); Error += glm::equal(F, 6.0f, glm::epsilon()) ? 0 : 1; float G = glm::roundEven(7.5f); Error += glm::equal(G, 8.0f, glm::epsilon()) ? 0 : 1; } { float A = glm::roundEven(-1.5f); Error += glm::equal(A, -2.0f, glm::epsilon()) ? 0 : 1; float B = glm::roundEven(-2.5f); Error += glm::equal(B, -2.0f, glm::epsilon()) ? 0 : 1; float C = glm::roundEven(-3.5f); Error += glm::equal(C, -4.0f, glm::epsilon()) ? 0 : 1; float D = glm::roundEven(-4.5f); Error += glm::equal(D, -4.0f, glm::epsilon()) ? 0 : 1; float E = glm::roundEven(-5.5f); Error += glm::equal(E, -6.0f, glm::epsilon()) ? 0 : 1; float F = glm::roundEven(-6.5f); Error += glm::equal(F, -6.0f, glm::epsilon()) ? 0 : 1; float G = glm::roundEven(-7.5f); Error += glm::equal(G, -8.0f, glm::epsilon()) ? 0 : 1; } return Error; } }//namespace roundEven namespace isnan_ { static int test() { int Error = 0; float Zero_f = 0.0; double Zero_d = 0.0; { Error += true == glm::isnan(0.0/Zero_d) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::dvec2(0.0 / Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::dvec3(0.0 / Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::dvec4(0.0 / Zero_d))) ? 0 : 1; } { Error += true == glm::isnan(0.0f/Zero_f) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::vec2(0.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::vec3(0.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isnan(glm::vec4(0.0f/Zero_f))) ? 0 : 1; } return Error; } }//namespace isnan_ namespace isinf_ { static int test() { int Error = 0; float Zero_f = 0.0; double Zero_d = 0.0; { Error += true == glm::isinf( 1.0/Zero_d) ? 0 : 1; Error += true == glm::isinf(-1.0/Zero_d) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec2( 1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec2(-1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec3( 1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec3(-1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec4( 1.0/Zero_d))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::dvec4(-1.0/Zero_d))) ? 0 : 1; } { Error += true == glm::isinf( 1.0f/Zero_f) ? 0 : 1; Error += true == glm::isinf(-1.0f/Zero_f) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec2( 1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec2(-1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec3( 1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec3(-1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec4( 1.0f/Zero_f))) ? 0 : 1; Error += true == glm::any(glm::isinf(glm::vec4(-1.0f/Zero_f))) ? 0 : 1; } return Error; } }//namespace isinf_ namespace sign { template GLM_FUNC_QUALIFIER genFIType sign_if(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_iec559 || (std::numeric_limits::is_signed && std::numeric_limits::is_integer), "'sign' only accept signed inputs"); genFIType result; if(x > genFIType(0)) result = genFIType(1); else if(x < genFIType(0)) result = genFIType(-1); else result = genFIType(0); return result; } #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wsign-conversion" #endif template GLM_FUNC_QUALIFIER genFIType sign_alu1(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return (x >> 31) | (static_cast(-x) >> 31); } #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop #endif GLM_FUNC_QUALIFIER int sign_alu2(int x) { GLM_STATIC_ASSERT(std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); # if GLM_COMPILER & GLM_COMPILER_VC # pragma warning(push) # pragma warning(disable : 4146) //cast truncates constant value # endif return -(static_cast(x) >> 31) | (-static_cast(x) >> 31); # if GLM_COMPILER & GLM_COMPILER_VC # pragma warning(pop) # endif } template GLM_FUNC_QUALIFIER genFIType sign_sub(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return (static_cast(-x) >> 31) - (static_cast(x) >> 31); } template GLM_FUNC_QUALIFIER genFIType sign_cmp(genFIType x) { GLM_STATIC_ASSERT( std::numeric_limits::is_signed && std::numeric_limits::is_integer, "'sign' only accept integer inputs"); return (x > 0) - (x < 0); } template struct type { genType Value; genType Return; }; static int test_int32() { type const Data[] = { { std::numeric_limits::max(), 1}, { std::numeric_limits::min(), -1}, { 0, 0}, { 1, 1}, { 2, 1}, { 3, 1}, {-1,-1}, {-2,-1}, {-3,-1} }; int Error = 0; for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = glm::sign(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_cmp(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_if(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_alu1(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::int32 Result = sign_alu2(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int test_i32vec4() { type const Data[] = { {glm::ivec4( 1), glm::ivec4( 1)}, {glm::ivec4( 0), glm::ivec4( 0)}, {glm::ivec4( 2), glm::ivec4( 1)}, {glm::ivec4( 3), glm::ivec4( 1)}, {glm::ivec4(-1), glm::ivec4(-1)}, {glm::ivec4(-2), glm::ivec4(-1)}, {glm::ivec4(-3), glm::ivec4(-1)} }; int Error = 0; for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::ivec4 Result = glm::sign(Data[i].Value); Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; } return Error; } static int test_f32vec4() { type const Data[] = { {glm::vec4( 1), glm::vec4( 1)}, {glm::vec4( 0), glm::vec4( 0)}, {glm::vec4( 2), glm::vec4( 1)}, {glm::vec4( 3), glm::vec4( 1)}, {glm::vec4(-1), glm::vec4(-1)}, {glm::vec4(-2), glm::vec4(-1)}, {glm::vec4(-3), glm::vec4(-1)} }; int Error = 0; for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::vec4 Result = glm::sign(Data[i].Value); Error += glm::all(glm::equal(Data[i].Return, Result, glm::epsilon())) ? 0 : 1; } return Error; } static int test() { int Error = 0; Error += test_int32(); Error += test_i32vec4(); Error += test_f32vec4(); return Error; } static int perf_rand(std::size_t Samples) { int Error = 0; std::size_t const Count = Samples; std::vector Input, Output; Input.resize(Count); Output.resize(Count); for(std::size_t i = 0; i < Count; ++i) Input[i] = static_cast(glm::linearRand(-65536.f, 65536.f)); std::clock_t Timestamp0 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_cmp(Input[i]); std::clock_t Timestamp1 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_if(Input[i]); std::clock_t Timestamp2 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu1(Input[i]); std::clock_t Timestamp3 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu2(Input[i]); std::clock_t Timestamp4 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_sub(Input[i]); std::clock_t Timestamp5 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = glm::sign(Input[i]); std::clock_t Timestamp6 = std::clock(); std::printf("sign_cmp(rand) Time %d clocks\n", static_cast(Timestamp1 - Timestamp0)); std::printf("sign_if(rand) Time %d clocks\n", static_cast(Timestamp2 - Timestamp1)); std::printf("sign_alu1(rand) Time %d clocks\n", static_cast(Timestamp3 - Timestamp2)); std::printf("sign_alu2(rand) Time %d clocks\n", static_cast(Timestamp4 - Timestamp3)); std::printf("sign_sub(rand) Time %d clocks\n", static_cast(Timestamp5 - Timestamp4)); std::printf("glm::sign(rand) Time %d clocks\n", static_cast(Timestamp6 - Timestamp5)); return Error; } static int perf_linear(std::size_t Samples) { int Error = 0; std::size_t const Count = Samples; std::vector Input, Output; Input.resize(Count); Output.resize(Count); for(std::size_t i = 0; i < Count; ++i) Input[i] = static_cast(i); std::clock_t Timestamp0 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_cmp(Input[i]); std::clock_t Timestamp1 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_if(Input[i]); std::clock_t Timestamp2 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu1(Input[i]); std::clock_t Timestamp3 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_alu2(Input[i]); std::clock_t Timestamp4 = std::clock(); for(std::size_t i = 0; i < Count; ++i) Output[i] = sign_sub(Input[i]); std::clock_t Timestamp5 = std::clock(); std::printf("sign_cmp(linear) Time %d clocks\n", static_cast(Timestamp1 - Timestamp0)); std::printf("sign_if(linear) Time %d clocks\n", static_cast(Timestamp2 - Timestamp1)); std::printf("sign_alu1(linear) Time %d clocks\n", static_cast(Timestamp3 - Timestamp2)); std::printf("sign_alu2(linear) Time %d clocks\n", static_cast(Timestamp4 - Timestamp3)); std::printf("sign_sub(linear) Time %d clocks\n", static_cast(Timestamp5 - Timestamp4)); return Error; } static int perf_linear_cal(std::size_t Samples) { int Error = 0; glm::int32 const Count = static_cast(Samples); std::clock_t Timestamp0 = std::clock(); glm::int32 Sum = 0; for(glm::int32 i = 1; i < Count; ++i) Sum += sign_cmp(i); std::clock_t Timestamp1 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_if(i); std::clock_t Timestamp2 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_alu1(i); std::clock_t Timestamp3 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_alu2(i); std::clock_t Timestamp4 = std::clock(); for(glm::int32 i = 1; i < Count; ++i) Sum += sign_sub(i); std::clock_t Timestamp5 = std::clock(); std::printf("Sum %d\n", static_cast(Sum)); std::printf("sign_cmp(linear_cal) Time %d clocks\n", static_cast(Timestamp1 - Timestamp0)); std::printf("sign_if(linear_cal) Time %d clocks\n", static_cast(Timestamp2 - Timestamp1)); std::printf("sign_alu1(linear_cal) Time %d clocks\n", static_cast(Timestamp3 - Timestamp2)); std::printf("sign_alu2(linear_cal) Time %d clocks\n", static_cast(Timestamp4 - Timestamp3)); std::printf("sign_sub(linear_cal) Time %d clocks\n", static_cast(Timestamp5 - Timestamp4)); return Error; } static int perf(std::size_t Samples) { int Error(0); Error += perf_linear_cal(Samples); Error += perf_linear(Samples); Error += perf_rand(Samples); return Error; } }//namespace sign namespace frexp_ { static int test() { int Error = 0; { glm::vec1 const x(1024); glm::ivec1 exp; glm::vec1 A = glm::frexp(x, exp); Error += glm::all(glm::equal(A, glm::vec1(0.5), glm::epsilon())) ? 0 : 1; Error += glm::all(glm::equal(exp, glm::ivec1(11))) ? 0 : 1; } { glm::vec2 const x(1024, 0.24); glm::ivec2 exp; glm::vec2 A = glm::frexp(x, exp); Error += glm::all(glm::equal(A, glm::vec2(0.5, 0.96), glm::epsilon())) ? 0 : 1; Error += glm::all(glm::equal(exp, glm::ivec2(11, -2))) ? 0 : 1; } { glm::vec3 const x(1024, 0.24, 0); glm::ivec3 exp; glm::vec3 A = glm::frexp(x, exp); Error += glm::all(glm::equal(A, glm::vec3(0.5, 0.96, 0.0), glm::epsilon())) ? 0 : 1; Error += glm::all(glm::equal(exp, glm::ivec3(11, -2, 0))) ? 0 : 1; } { glm::vec4 const x(1024, 0.24, 0, -1.33); glm::ivec4 exp; glm::vec4 A = glm::frexp(x, exp); Error += glm::all(glm::equal(A, glm::vec4(0.5, 0.96, 0.0, -0.665), glm::epsilon())) ? 0 : 1; Error += glm::all(glm::equal(exp, glm::ivec4(11, -2, 0, 1))) ? 0 : 1; } return Error; } }//namespace frexp_ namespace ldexp_ { static int test() { int Error = 0; { glm::vec1 A = glm::vec1(0.5); glm::ivec1 exp = glm::ivec1(11); glm::vec1 x = glm::ldexp(A, exp); Error += glm::all(glm::equal(x, glm::vec1(1024),0.00001f)) ? 0 : 1; } { glm::vec2 A = glm::vec2(0.5, 0.96); glm::ivec2 exp = glm::ivec2(11, -2); glm::vec2 x = glm::ldexp(A, exp); Error += glm::all(glm::equal(x, glm::vec2(1024, .24),0.00001f)) ? 0 : 1; } { glm::vec3 A = glm::vec3(0.5, 0.96, 0.0); glm::ivec3 exp = glm::ivec3(11, -2, 0); glm::vec3 x = glm::ldexp(A, exp); Error += glm::all(glm::equal(x, glm::vec3(1024, .24, 0),0.00001f)) ? 0 : 1; } { glm::vec4 A = glm::vec4(0.5, 0.96, 0.0, -0.665); glm::ivec4 exp = glm::ivec4(11, -2, 0, 1); glm::vec4 x = glm::ldexp(A, exp); Error += glm::all(glm::equal(x, glm::vec4(1024, .24, 0, -1.33),0.00001f)) ? 0 : 1; } return Error; } }//namespace ldexp_ static int test_constexpr() { #if GLM_HAS_CONSTEXPR static_assert(glm::abs(1.0f) > 0.0f, "GLM: Failed constexpr"); constexpr glm::vec1 const A = glm::abs(glm::vec1(1.0f)); constexpr glm::vec2 const B = glm::abs(glm::vec2(1.0f)); constexpr glm::vec3 const C = glm::abs(glm::vec3(1.0f)); constexpr glm::vec4 const D = glm::abs(glm::vec4(1.0f)); static_assert(glm::all(glm::equal(A, glm::vec1(1.0f), glm::epsilon())), "GLM: Failed constexpr"); static_assert(glm::all(glm::equal(B, glm::vec2(1.0f), glm::epsilon())), "GLM: Failed constexpr"); static_assert(glm::all(glm::equal(C, glm::vec3(1.0f), glm::epsilon())), "GLM: Failed constexpr"); static_assert(glm::all(glm::equal(D, glm::vec4(1.0f), glm::epsilon())), "GLM: Failed constexpr"); #endif // GLM_HAS_CONSTEXPR return 0; } int main() { int Error = 0; Error += test_constexpr(); Error += sign::test(); Error += floor_::test(); Error += mod_::test(); Error += modf_::test(); Error += floatBitsToInt::test(); Error += floatBitsToUint::test(); Error += mix_::test(); Error += step_::test(); Error += smoothstep_::test(); Error += max_::test(); Error += min_::test(); Error += clamp_::test(); Error += round_::test(); Error += roundEven::test(); Error += isnan_::test(); Error += isinf_::test(); Error += frexp_::test(); Error += ldexp_::test(); # ifdef NDEBUG std::size_t Samples = 1000; # else std::size_t Samples = 1; # endif Error += sign::perf(Samples); Error += min_::perf(Samples); return Error; } #if(GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(pop) #endif