#include #include #include #include #include #include namespace isPowerOfTwo { template struct type { genType Value; bool Return; }; int test_int16() { type const Data[] = { {0x0001, true}, {0x0002, true}, {0x0004, true}, {0x0080, true}, {0x0000, true}, {0x0003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_uint16() { type const Data[] = { {0x0001, true}, {0x0002, true}, {0x0004, true}, {0x0000, true}, {0x0000, true}, {0x0003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_int32() { type const Data[] = { {0x00000001, true}, {0x00000002, true}, {0x00000004, true}, {0x0000000f, false}, {0x00000000, true}, {0x00000003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_uint32() { type const Data[] = { {0x00000001, true}, {0x00000002, true}, {0x00000004, true}, {0x80000000, true}, {0x00000000, true}, {0x00000003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += test_int16(); Error += test_uint16(); Error += test_int32(); Error += test_uint32(); return Error; } }//isPowerOfTwo namespace nextPowerOfTwo_advanced { template GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) { genIUType tmp = Value; genIUType result = genIUType(0); while(tmp) { result = (tmp & (~tmp + 1)); // grab lowest bit tmp &= ~result; // clear lowest bit } return result; } template GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) { return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; } template struct type { genType Value; genType Return; }; int test_int32() { type const Data[] = { {0x0000ffff, 0x00010000}, {-3, -4}, {-8, -8}, {0x00000001, 0x00000001}, {0x00000002, 0x00000002}, {0x00000004, 0x00000004}, {0x00000007, 0x00000008}, {0x0000fff0, 0x00010000}, {0x0000f000, 0x00010000}, {0x08000000, 0x08000000}, {0x00000000, 0x00000000}, {0x00000003, 0x00000004} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_uint32() { type const Data[] = { {0x00000001, 0x00000001}, {0x00000002, 0x00000002}, {0x00000004, 0x00000004}, {0x00000007, 0x00000008}, {0x0000ffff, 0x00010000}, {0x0000fff0, 0x00010000}, {0x0000f000, 0x00010000}, {0x80000000, 0x80000000}, {0x00000000, 0x00000000}, {0x00000003, 0x00000004} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int perf() { int Error(0); std::vector v; v.resize(100000000); std::clock_t Timestramp0 = std::clock(); for(glm::uint32 i = 0, n = static_cast(v.size()); i < n; ++i) v[i] = nextPowerOfTwo_loop(i); std::clock_t Timestramp1 = std::clock(); for(glm::uint32 i = 0, n = static_cast(v.size()); i < n; ++i) v[i] = glm::nextPowerOfTwo(i); std::clock_t Timestramp2 = std::clock(); std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast(Timestramp1 - Timestramp0)); std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast(Timestramp2 - Timestramp1)); return Error; } int test() { int Error(0); Error += test_int32(); Error += test_uint32(); return Error; } }//namespace nextPowerOfTwo_advanced namespace prevPowerOfTwo { template int run() { int Error = 0; T const A = glm::prevPowerOfTwo(static_cast(7)); Error += A == static_cast(4) ? 0 : 1; T const B = glm::prevPowerOfTwo(static_cast(15)); Error += B == static_cast(8) ? 0 : 1; T const C = glm::prevPowerOfTwo(static_cast(31)); Error += C == static_cast(16) ? 0 : 1; T const D = glm::prevPowerOfTwo(static_cast(32)); Error += D == static_cast(32) ? 0 : 1; return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace prevPowerOfTwo namespace nextPowerOfTwo { template int run() { int Error = 0; T const A = glm::nextPowerOfTwo(static_cast(7)); Error += A == static_cast(8) ? 0 : 1; T const B = glm::nextPowerOfTwo(static_cast(15)); Error += B == static_cast(16) ? 0 : 1; T const C = glm::nextPowerOfTwo(static_cast(31)); Error += C == static_cast(32) ? 0 : 1; T const D = glm::nextPowerOfTwo(static_cast(32)); Error += D == static_cast(32) ? 0 : 1; return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace nextPowerOfTwo namespace prevMultiple { template struct type { genIUType Source; genIUType Multiple; genIUType Return; }; template int run() { type const Data[] = { {8, 3, 6}, {7, 7, 7} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace prevMultiple namespace nextMultiple { template struct type { genIUType Source; genIUType Multiple; genIUType Return; }; template int run() { type const Data[] = { { 8, 3, 6 }, { 7, 7, 7 } }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { T const Result = glm::nextMultiple(Data[i].Source, Data[i].Multiple); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace nextMultiple int main() { int Error(0); Error += isPowerOfTwo::test(); Error += prevPowerOfTwo::test(); Error += nextPowerOfTwo::test(); Error += nextPowerOfTwo_advanced::test(); # ifdef NDEBUG Error += nextPowerOfTwo_advanced::perf(); # endif//NDEBUG Error += prevMultiple::test(); Error += nextMultiple::test(); return Error; }