
GLM: Manual

Version 0.9.0
April 30, 2010

Christophe Riccio
g.truc.creation[at]gmail.com

Copyright © 2005–2010, G-Truc Creation



Summary

1. Introduction

2. Getting started
2.1. Compiler setup
2.2. Core features
2.3. Setup of swizzle operators
2.4. Core sample
2.5. GLM Extensions
2.6. Dependencies

3. FAQ
3.1 Why GLM follows GLSL specification and conventions?
3.2. Would it be possible to add my feature?
3.3. Does GLM run GLSL program?
3.4. Does a GLSL compiler build GLM codes?
3.5. Should I use GTX extensions?
3.6. Would it be possible to change GLM to do glVertex3fv(glm::vec3(0))?
3.7. Where can I ask my questions?
3.8. Where can I report a bug?
3.9. Where can I find the documentation of extensions?

4. Known issues
4.1. Swizzle operators
4.2. not function
4.3. half based types

5. References



1. Introduction

OpenGL Mathematics (GLM) is a C++ mathematics library for 3D applications based on the 
OpenGL Shading Language (GLSL) specification. 

GLM provides 3D programmers with math classes and functions that are similar to GLSL or 
any high level GPU programming language. The idea is to have a library that has identical 
naming conventions and functionalities than GLSL so that when developers know GLSL, they 
know how to use GLM.

However, this project isn't limited by GLSL features. An extension system, based on the GLSL 
extension conventions, allows extended capabilities.

This  library  can  be  used  with  OpenGL  but  also  for  software  rendering  (Raytracing  / 
Rasterisation), image processing and as much contexts as a simple math library could be used 
for.

GLM is written as a platform independent library and supports the following compilers:
• GNU GCC 3.4 and higher
• Microsoft Visual Studio 8.0 and higher

The source code is under the MIT licence.

Any feedback is welcome and can be sent to g.truc.creation[at]gmail.com.



2. Getting started

2.1. Compiler setup

GLM is a header library. Therefore, it  doesn’t require to be built separately.  GLM usage is 
achieved by simply directing the compiler to add the GLM install path to the include search 
paths. (-I option with GCC) Another option is to copy the GLM files directly into the project 
source directory.

GLM is a header only library that makes heavy usages of C++ templates. This design may 
significantly  increase  the  compile  time  for  files  that  use  GLM.  Precompiled  headers  are 
recommended to avoid this issue. 

2.2. Core features

After initial compiler setup, all core features of GLM (core GLSL features) can be accessed by 
including the glm.hpp header.  The line:  #include <glm/glm.hpp> is used for a typical 
compiler setup.

Note that by default there are no dependencies on external headers like gl.h, gl3.h, glu.h 
or windows.h.

2.3. Setup of swizzle operators

A common feature  of  shader  languages  like  GLSL is  components  swizzling.  This  involves 
being able to select which components of a vector are used and in what order. For example, 
“variable.x”, “variable.xxy”, “variable.zxyy” are examples of swizzling.

However in GLM, swizzling operators are disabled by default. To enable swizzling the define 
GLM_SWIZZLE must  be  defined  to  one  of  GLM_SWIZZLE_XYZW,  GLM_SWIZZLE_RGBA, 
GLM_SWIZZLE_STQP or GLM_SWIZZLE_FULL depending on what swizzle syntax is required. 

The swizzle defines are supplied in the file setup.hpp and a simple way of enabling swizzling 
is  to  edit  this  file.  However  to  avoid  settings  being  lost  on  future  GLM  upgrades,  it  is 
suggested that setup.hpp be included first, then custom settings and finally glm.hpp. For 
example:

#include  <glm/setup.hpp>
#define GLM_SWIZZLE  GLM_SWIZZLE_FULL
#include  <glm/glm.hpp>

These custom setup lines can then be placed in a common project header or pre-compiled 
header.

2.4. Use sample of GLM core

#include <glm/glm.hpp>

int foo()
{

glm::vec4 Position = glm::vec4(glm::vec3(0.0), 1.0);

glm::mat4 Model = glm::mat4(1.0);
Model[4] = glm::vec4(1.0, 1.0, 0.0, 1.0);
glm::vec4 Transformed = Model * Position;

return 0;
}



2.5. GLM Extensions

GLM  extends  the  core  GLSL  feature  set  with  extensions.  These  extensions  include: 
quaternion, transformation, spline, matrix inverse, color spaces, etc.   
Note that some extensions are incompatible with other extension as and may result in C++ 
name collisions when used together.  

GLM provides two methods to use these extensions.

This method simply requires the inclusion of the extension implementation filename.  The 
extension features are added to the glm namespace.

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

int foo()
{

glm::vec4 Position = glm::vec4(glm:: vec3(0.0f), 1.0f);

glm::mat4 Model = glm::translate(1.0f, 1.0f, 1.0f);
glm::vec4 Transformed = Model * Position;

return 0;
}

2.6. Dependencies

When <glm/glm.hpp> is included, GLM provides all the GLSL features it implements in C+
+. 

By including <glm/ext.hpp> all the features of all extensions of GLM are included. 

When you include a specific extension, all the dependent extensions will be included as well. 
All the extensions depend on GLM core. (<glm/glm.hpp>)

There is no dependence with external libraries. However, if <boost/static_assert.hpp> 
is included boost static assert will be used all over GLM code.



3. FAQ

3.1 Why GLM follows GLSL specification and conventions?

Following  GLSL  conventions  is  a  really  strict  policy  of  GLM.  GLM  has  been  designed 
following the idea that everyone does its own math library with his own conventions. The idea 
is that brilliant developers (the OpenGL ARB) worked together and agreed to make GLSL. 
Following GLSL conventions is a way to find consensus. Moreover, basically when a developer 
knows GLSL, he knows GLM.

3.2. Would it be possible to add my feature?

YES. Every feature request could be added by submitting it here: 
https://sourceforge.net/apps/trac/ogl-math/newticket

These  requests  would  mainly  take  the  form  of  extensions  and  if  you  provide  an 
implementation, the feature will be added automatically in the next GLM release.

A SourceForge.net account is required to create a ticket.

3.3. Does GLM run GLSL program?

No, GLM is a C++ implementation of a subset of GLSL.

3.4. Does a GLSL compiler build GLM codes?

Not directly but it can be easy to port. However, the difference between a shader and C++ 
program at software design level will probably make this idea unlikely or impossible.

3.5. Should I use GTX extensions?

GTX extensions are qualified to be experimental extensions.  In GLM this means that these 
extensions might change from version to version without restriction. In practice,  it  doesn’t 
really change except time to time. GTC extensions are stabled, tested and perfectly reliable in 
time. Many GTX extensions extend GTC extensions and provide a way to explore features and 
implementations before becoming stable by a promotion as GTC extensions. This is fairly the 
way OpenGL features are developed through extensions.

3.6. Would it be possible to change GLM to do glVertex3fv(glm::vec3(0))?

It’s possible to implement such thing in C++ with the implementation of the appropriate cast 
operator. In this example it’s likely because it would result as a transparent cast, however, 
most of the time it’s really unlikely resulting of build with no error and programs running with 
unexpected behaviors. 

GLM_GTC_type_ptr extension provide a safe solution:
glm::vec4 v(0);
glm::mat4 m(0);

glVertex3fv(glm::value_ptr(v)) 
glLoadMatrixfv(glm::value_ptr(m));

Another solution inspired by STL:
glVertex3fv(&v[0]);
glLoadMatrixfv(&m[0][0]);

3.7. Where can I ask my questions?

A good place is the OpenGL Toolkits forum on OpenGL.org:
http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=postlist&Board=10&page=1

http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=postlist&Board=10&page=1
https://sourceforge.net/apps/trac/ogl-math/newticket


3.8. Where can I report a bug?

Just like feature requests:
https://sourceforge.net/apps/trac/ogl-math/newticket

A SourceForge account is required to create a ticket.

3.9. Where can I find the documentation of extensions?

The Doxygen generated documentation includes a complete list of all  extensions available. 
Explore this documentation to get a complete view of all GLM capabilities!
http://glm.g-truc.net/html/index.html

http://glm.g-truc.net/html/index.html
https://sourceforge.net/apps/trac/ogl-math/newticket


4. Known issues

4.1. Swizzle operators

Enabling the swizzle operator can result in name collisions with the Win32 API. To prevent 
these issues, you can access to the internal swizzle operator functions without enabling the 
swizzle operator itself. This is done by defining: 
#define GLM_SWIZZLE GLM_SWIZZLE_FUNC

4.2. not function

The GLSL keyword not is also a keyword in C++. To prevent name collisions, the GLSL not 
function has been implemented with the name not_.

4.3. half based types

GLM supports half float number types through the extension  GLM_GTC_half_float. This 
extension provides the types half, hvec*, hmat*x* and hquat*. 

Unfortunately,  C++  norm  doesn’t  support  anonymous  unions  which  limit  hvec* vector 
components access to x, y, z and w.

However, Visual C++ does support anonymous unions. When GLM_USE_ANONYMOUS_UNION 
is define, it enables the support of all component names (x,y,z,w ; r,g,b,a ; s,t,p,q). With GCC it 
will result in a build error.



5. References

OpenGL 4.0 core specification:
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

GLSL 4.00 specification:
http://www.opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf

GLM HEAD snapshot:
http://ogl-math.git.sourceforge.net/git/gitweb.cgi?p=ogl-math/ogl-

math;a=snapshot;h=HEAD;sf=tgz

GLM Trac:
https://sourceforge.net/apps/trac/ogl-math

GLM website:
http://glm.g-truc.net

G-Truc Creation page:
http://www.g-truc.net/project-0016.html

http://www.g-truc.net/project-0016.html
http://glm.g-truc.net/
https://sourceforge.net/apps/trac/ogl-math/
http://ogl-math.git.sourceforge.net/git/gitweb.cgi?p=ogl-math/ogl-math;a=snapshot;h=HEAD;sf=tgz
http://ogl-math.git.sourceforge.net/git/gitweb.cgi?p=ogl-math/ogl-math;a=snapshot;h=HEAD;sf=tgz
http://www.opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf
http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

