Merge pull request #1071 from sgrottel/gtx-pca
Implemented 'principle component analysis' utility in gtx #1071master
commit
dc9e555b4c
4 changed files with 1191 additions and 0 deletions
@ -0,0 +1,111 @@ |
||||
/// @ref gtx_pca
|
||||
/// @file glm/gtx/pca.hpp
|
||||
///
|
||||
/// @see core (dependence)
|
||||
/// @see ext_scalar_relational (dependence)
|
||||
///
|
||||
/// @defgroup gtx_pca GLM_GTX_pca
|
||||
/// @ingroup gtx
|
||||
///
|
||||
/// Include <glm/gtx/pca.hpp> to use the features of this extension.
|
||||
///
|
||||
/// Implements functions required for fundamental 'princple component analysis' in 2D, 3D, and 4D:
|
||||
/// 1) Computing a covariance matrics from a list of _relative_ position vectors
|
||||
/// 2) Compute the eigenvalues and eigenvectors of the covariance matrics
|
||||
/// This is useful, e.g., to compute an object-aligned bounding box from vertices of an object.
|
||||
/// https://en.wikipedia.org/wiki/Principal_component_analysis
|
||||
///
|
||||
/// Example:
|
||||
/// ```
|
||||
/// std::vector<glm::dvec3> ptData;
|
||||
/// // ... fill ptData with some point data, e.g. vertices
|
||||
///
|
||||
/// glm::dvec3 center = computeCenter(ptData);
|
||||
///
|
||||
/// glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center);
|
||||
///
|
||||
/// glm::dvec3 evals;
|
||||
/// glm::dmat3 evecs;
|
||||
/// int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs);
|
||||
///
|
||||
/// if(evcnt != 3)
|
||||
/// // ... error handling
|
||||
///
|
||||
/// glm::sortEigenvalues(evals, evecs);
|
||||
///
|
||||
/// // ... now evecs[0] points in the direction (symmetric) of the largest spatial distribuion within ptData
|
||||
/// ```
|
||||
|
||||
#pragma once |
||||
|
||||
// Dependency:
|
||||
#include "../glm.hpp" |
||||
#include "../ext/scalar_relational.hpp" |
||||
|
||||
|
||||
#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) |
||||
# ifndef GLM_ENABLE_EXPERIMENTAL |
||||
# pragma message("GLM: GLM_GTX_pca is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") |
||||
# else |
||||
# pragma message("GLM: GLM_GTX_pca extension included") |
||||
# endif |
||||
#endif |
||||
|
||||
namespace glm { |
||||
/// @addtogroup gtx_pca
|
||||
/// @{
|
||||
|
||||
/// Compute a covariance matrix form an array of relative coordinates `v` (e.g., relative to the center of gravity of the object)
|
||||
/// @param v Points to a memory holding `n` times vectors
|
||||
template<length_t D, typename T, qualifier Q> |
||||
GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n); |
||||
|
||||
/// Compute a covariance matrix form an array of absolute coordinates `v` and a precomputed center of gravity `c`
|
||||
/// @param v Points to a memory holding `n` times vectors
|
||||
template<length_t D, typename T, qualifier Q> |
||||
GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n, vec<D, T, Q> const& c); |
||||
|
||||
/// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with relative coordinates (e.g., relative to the center of gravity of the object)
|
||||
/// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;`
|
||||
template<length_t D, typename T, qualifier Q, typename I> |
||||
GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e); |
||||
|
||||
/// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with absolute coordinates and a precomputed center of gravity `c`
|
||||
/// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;`
|
||||
template<length_t D, typename T, qualifier Q, typename I> |
||||
GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e, vec<D, T, Q> const& c); |
||||
|
||||
/// Assuming the provided covariance matrix `covarMat` is symmetric and real-valued, this function find the `D` Eigenvalues of the matrix, and also provides the corresponding Eigenvectors.
|
||||
/// Note: the data in `outEigenvalues` and `outEigenvectors` are in matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||||
/// This is a numeric implementation to find the Eigenvalues, using 'QL decomposition` (variant of QR decomposition: https://en.wikipedia.org/wiki/QR_decomposition).
|
||||
/// @param covarMat A symmetric, real-valued covariance matrix, e.g. computed from `computeCovarianceMatrix`.
|
||||
/// @param outEigenvalues Vector to receive the found eigenvalues
|
||||
/// @param outEigenvectors Matrix to receive the found eigenvectors corresponding to the found eigenvalues, as column vectors
|
||||
/// @return The number of eigenvalues found, usually D if the precondition of the covariance matrix is met.
|
||||
template<length_t D, typename T, qualifier Q> |
||||
GLM_FUNC_DECL unsigned int findEigenvaluesSymReal |
||||
( |
||||
mat<D, D, T, Q> const& covarMat, |
||||
vec<D, T, Q>& outEigenvalues, |
||||
mat<D, D, T, Q>& outEigenvectors |
||||
); |
||||
|
||||
/// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
|
||||
/// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||||
template<typename T, qualifier Q> |
||||
GLM_INLINE void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors); |
||||
|
||||
/// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
|
||||
/// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||||
template<typename T, qualifier Q> |
||||
GLM_INLINE void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors); |
||||
|
||||
/// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
|
||||
/// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||||
template<typename T, qualifier Q> |
||||
GLM_INLINE void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors); |
||||
|
||||
/// @}
|
||||
}//namespace glm
|
||||
|
||||
#include "pca.inl" |
@ -0,0 +1,343 @@ |
||||
/// @ref gtx_pca |
||||
|
||||
#ifndef GLM_HAS_CXX11_STL |
||||
#include <algorithm> |
||||
#else |
||||
#include <utility> |
||||
#endif |
||||
|
||||
namespace glm { |
||||
|
||||
|
||||
template<length_t D, typename T, qualifier Q> |
||||
GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n) |
||||
{ |
||||
return computeCovarianceMatrix<D, T, Q, vec<D, T, Q> const*>(v, v + n); |
||||
} |
||||
|
||||
|
||||
template<length_t D, typename T, qualifier Q> |
||||
GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n, vec<D, T, Q> const& c) |
||||
{ |
||||
return computeCovarianceMatrix<D, T, Q, vec<D, T, Q> const*>(v, v + n, c); |
||||
} |
||||
|
||||
|
||||
template<length_t D, typename T, qualifier Q, typename I> |
||||
GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e) |
||||
{ |
||||
glm::mat<D, D, T, Q> m(0); |
||||
|
||||
size_t cnt = 0; |
||||
for(I i = b; i != e; i++) |
||||
{ |
||||
vec<D, T, Q> const& v = *i; |
||||
for(length_t x = 0; x < D; ++x) |
||||
for(length_t y = 0; y < D; ++y) |
||||
m[x][y] += static_cast<T>(v[x] * v[y]); |
||||
cnt++; |
||||
} |
||||
if(cnt > 0) |
||||
m /= static_cast<T>(cnt); |
||||
|
||||
return m; |
||||
} |
||||
|
||||
|
||||
template<length_t D, typename T, qualifier Q, typename I> |
||||
GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e, vec<D, T, Q> const& c) |
||||
{ |
||||
glm::mat<D, D, T, Q> m(0); |
||||
glm::vec<D, T, Q> v; |
||||
|
||||
size_t cnt = 0; |
||||
for(I i = b; i != e; i++) |
||||
{ |
||||
v = *i - c; |
||||
for(length_t x = 0; x < D; ++x) |
||||
for(length_t y = 0; y < D; ++y) |
||||
m[x][y] += static_cast<T>(v[x] * v[y]); |
||||
cnt++; |
||||
} |
||||
if(cnt > 0) |
||||
m /= static_cast<T>(cnt); |
||||
|
||||
return m; |
||||
} |
||||
|
||||
namespace _internal_ |
||||
{ |
||||
|
||||
template<typename T> |
||||
GLM_INLINE T transferSign(T const& v, T const& s) |
||||
{ |
||||
return ((s) >= 0 ? glm::abs(v) : -glm::abs(v)); |
||||
} |
||||
|
||||
template<typename T> |
||||
GLM_INLINE T pythag(T const& a, T const& b) { |
||||
static const T epsilon = static_cast<T>(0.0000001); |
||||
T absa = glm::abs(a); |
||||
T absb = glm::abs(b); |
||||
if(absa > absb) { |
||||
absb /= absa; |
||||
absb *= absb; |
||||
return absa * glm::sqrt(static_cast<T>(1) + absb); |
||||
} |
||||
if(glm::equal<T>(absb, 0, epsilon)) return static_cast<T>(0); |
||||
absa /= absb; |
||||
absa *= absa; |
||||
return absb * glm::sqrt(static_cast<T>(1) + absa); |
||||
} |
||||
|
||||
} |
||||
|
||||
template<length_t D, typename T, qualifier Q> |
||||
GLM_FUNC_DECL unsigned int findEigenvaluesSymReal |
||||
( |
||||
mat<D, D, T, Q> const& covarMat, |
||||
vec<D, T, Q>& outEigenvalues, |
||||
mat<D, D, T, Q>& outEigenvectors |
||||
) |
||||
{ |
||||
using _internal_::transferSign; |
||||
using _internal_::pythag; |
||||
|
||||
T a[D * D]; // matrix -- input and workspace for algorithm (will be changed inplace) |
||||
T d[D]; // diagonal elements |
||||
T e[D]; // off-diagonal elements |
||||
|
||||
for(length_t r = 0; r < D; r++) |
||||
for(length_t c = 0; c < D; c++) |
||||
a[(r) * D + (c)] = covarMat[c][r]; |
||||
|
||||
// 1. Householder reduction. |
||||
length_t l, k, j, i; |
||||
T scale, hh, h, g, f; |
||||
static const T epsilon = static_cast<T>(0.0000001); |
||||
|
||||
for(i = D; i >= 2; i--) |
||||
{ |
||||
l = i - 1; |
||||
h = scale = 0; |
||||
if(l > 1) |
||||
{ |
||||
for(k = 1; k <= l; k++) |
||||
{ |
||||
scale += glm::abs(a[(i - 1) * D + (k - 1)]); |
||||
} |
||||
if(glm::equal<T>(scale, 0, epsilon)) |
||||
{ |
||||
e[i - 1] = a[(i - 1) * D + (l - 1)]; |
||||
} |
||||
else |
||||
{ |
||||
for(k = 1; k <= l; k++) |
||||
{ |
||||
a[(i - 1) * D + (k - 1)] /= scale; |
||||
h += a[(i - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)]; |
||||
} |
||||
f = a[(i - 1) * D + (l - 1)]; |
||||
g = ((f >= 0) ? -glm::sqrt(h) : glm::sqrt(h)); |
||||
e[i - 1] = scale * g; |
||||
h -= f * g; |
||||
a[(i - 1) * D + (l - 1)] = f - g; |
||||
f = 0; |
||||
for(j = 1; j <= l; j++) |
||||
{ |
||||
a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] / h; |
||||
g = 0; |
||||
for(k = 1; k <= j; k++) |
||||
{ |
||||
g += a[(j - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)]; |
||||
} |
||||
for(k = j + 1; k <= l; k++) |
||||
{ |
||||
g += a[(k - 1) * D + (j - 1)] * a[(i - 1) * D + (k - 1)]; |
||||
} |
||||
e[j - 1] = g / h; |
||||
f += e[j - 1] * a[(i - 1) * D + (j - 1)]; |
||||
} |
||||
hh = f / (h + h); |
||||
for(j = 1; j <= l; j++) |
||||
{ |
||||
f = a[(i - 1) * D + (j - 1)]; |
||||
e[j - 1] = g = e[j - 1] - hh * f; |
||||
for(k = 1; k <= j; k++) |
||||
{ |
||||
a[(j - 1) * D + (k - 1)] -= (f * e[k - 1] + g * a[(i - 1) * D + (k - 1)]); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
e[i - 1] = a[(i - 1) * D + (l - 1)]; |
||||
} |
||||
d[i - 1] = h; |
||||
} |
||||
d[0] = 0; |
||||
e[0] = 0; |
||||
for(i = 1; i <= D; i++) |
||||
{ |
||||
l = i - 1; |
||||
if(!glm::equal<T>(d[i - 1], 0, epsilon)) |
||||
{ |
||||
for(j = 1; j <= l; j++) |
||||
{ |
||||
g = 0; |
||||
for(k = 1; k <= l; k++) |
||||
{ |
||||
g += a[(i - 1) * D + (k - 1)] * a[(k - 1) * D + (j - 1)]; |
||||
} |
||||
for(k = 1; k <= l; k++) |
||||
{ |
||||
a[(k - 1) * D + (j - 1)] -= g * a[(k - 1) * D + (i - 1)]; |
||||
} |
||||
} |
||||
} |
||||
d[i - 1] = a[(i - 1) * D + (i - 1)]; |
||||
a[(i - 1) * D + (i - 1)] = 1; |
||||
for(j = 1; j <= l; j++) |
||||
{ |
||||
a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] = 0; |
||||
} |
||||
} |
||||
|
||||
// 2. Calculation of eigenvalues and eigenvectors (QL algorithm) |
||||
length_t m, iter; |
||||
T s, r, p, dd, c, b; |
||||
const length_t MAX_ITER = 30; |
||||
|
||||
for(i = 2; i <= D; i++) |
||||
{ |
||||
e[i - 2] = e[i - 1]; |
||||
} |
||||
e[D - 1] = 0; |
||||
|
||||
for(l = 1; l <= D; l++) |
||||
{ |
||||
iter = 0; |
||||
do |
||||
{ |
||||
for(m = l; m <= D - 1; m++) |
||||
{ |
||||
dd = glm::abs(d[m - 1]) + glm::abs(d[m - 1 + 1]); |
||||
if(glm::equal<T>(glm::abs(e[m - 1]) + dd, dd, epsilon)) |
||||
break; |
||||
} |
||||
if(m != l) |
||||
{ |
||||
if(iter++ == MAX_ITER) |
||||
{ |
||||
return 0; // Too many iterations in FindEigenvalues |
||||
} |
||||
g = (d[l - 1 + 1] - d[l - 1]) / (2 * e[l - 1]); |
||||
r = pythag<T>(g, 1); |
||||
g = d[m - 1] - d[l - 1] + e[l - 1] / (g + transferSign(r, g)); |
||||
s = c = 1; |
||||
p = 0; |
||||
for(i = m - 1; i >= l; i--) |
||||
{ |
||||
f = s * e[i - 1]; |
||||
b = c * e[i - 1]; |
||||
e[i - 1 + 1] = r = pythag(f, g); |
||||
if(glm::equal<T>(r, 0, epsilon)) |
||||
{ |
||||
d[i - 1 + 1] -= p; |
||||
e[m - 1] = 0; |
||||
break; |
||||
} |
||||
s = f / r; |
||||
c = g / r; |
||||
g = d[i - 1 + 1] - p; |
||||
r = (d[i - 1] - g) * s + 2 * c * b; |
||||
d[i - 1 + 1] = g + (p = s * r); |
||||
g = c * r - b; |
||||
for(k = 1; k <= D; k++) |
||||
{ |
||||
f = a[(k - 1) * D + (i - 1 + 1)]; |
||||
a[(k - 1) * D + (i - 1 + 1)] = s * a[(k - 1) * D + (i - 1)] + c * f; |
||||
a[(k - 1) * D + (i - 1)] = c * a[(k - 1) * D + (i - 1)] - s * f; |
||||
} |
||||
} |
||||
if(glm::equal<T>(r, 0, epsilon) && (i >= l)) |
||||
continue; |
||||
d[l - 1] -= p; |
||||
e[l - 1] = g; |
||||
e[m - 1] = 0; |
||||
} |
||||
} while(m != l); |
||||
} |
||||
|
||||
// 3. output |
||||
for(i = 0; i < D; i++) |
||||
outEigenvalues[i] = d[i]; |
||||
for(i = 0; i < D; i++) |
||||
for(j = 0; j < D; j++) |
||||
outEigenvectors[i][j] = a[(j) * D + (i)]; |
||||
|
||||
return D; |
||||
} |
||||
|
||||
template<typename T, qualifier Q> |
||||
GLM_INLINE void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors) |
||||
{ |
||||
if (eigenvalues[0] < eigenvalues[1]) |
||||
{ |
||||
std::swap(eigenvalues[0], eigenvalues[1]); |
||||
std::swap(eigenvectors[0], eigenvectors[1]); |
||||
} |
||||
} |
||||
|
||||
template<typename T, qualifier Q> |
||||
GLM_INLINE void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors) |
||||
{ |
||||
if (eigenvalues[0] < eigenvalues[1]) |
||||
{ |
||||
std::swap(eigenvalues[0], eigenvalues[1]); |
||||
std::swap(eigenvectors[0], eigenvectors[1]); |
||||
} |
||||
if (eigenvalues[0] < eigenvalues[2]) |
||||
{ |
||||
std::swap(eigenvalues[0], eigenvalues[2]); |
||||
std::swap(eigenvectors[0], eigenvectors[2]); |
||||
} |
||||
if (eigenvalues[1] < eigenvalues[2]) |
||||
{ |
||||
std::swap(eigenvalues[1], eigenvalues[2]); |
||||
std::swap(eigenvectors[1], eigenvectors[2]); |
||||
} |
||||
} |
||||
|
||||
template<typename T, qualifier Q> |
||||
GLM_INLINE void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors) |
||||
{ |
||||
if (eigenvalues[0] < eigenvalues[2]) |
||||
{ |
||||
std::swap(eigenvalues[0], eigenvalues[2]); |
||||
std::swap(eigenvectors[0], eigenvectors[2]); |
||||
} |
||||
if (eigenvalues[1] < eigenvalues[3]) |
||||
{ |
||||
std::swap(eigenvalues[1], eigenvalues[3]); |
||||
std::swap(eigenvectors[1], eigenvectors[3]); |
||||
} |
||||
if (eigenvalues[0] < eigenvalues[1]) |
||||
{ |
||||
std::swap(eigenvalues[0], eigenvalues[1]); |
||||
std::swap(eigenvectors[0], eigenvectors[1]); |
||||
} |
||||
if (eigenvalues[2] < eigenvalues[3]) |
||||
{ |
||||
std::swap(eigenvalues[2], eigenvalues[3]); |
||||
std::swap(eigenvectors[2], eigenvectors[3]); |
||||
} |
||||
if (eigenvalues[1] < eigenvalues[2]) |
||||
{ |
||||
std::swap(eigenvalues[1], eigenvalues[2]); |
||||
std::swap(eigenvectors[1], eigenvectors[2]); |
||||
} |
||||
} |
||||
|
||||
}//namespace glm |
@ -0,0 +1,736 @@ |
||||
#define GLM_ENABLE_EXPERIMENTAL |
||||
#include <glm/glm.hpp> |
||||
#include <glm/gtx/pca.hpp> |
||||
#include <glm/gtc/epsilon.hpp> |
||||
#include <glm/gtx/string_cast.hpp> |
||||
|
||||
#include <cstdio> |
||||
#include <vector> |
||||
#if GLM_HAS_CXX11_STL == 1 |
||||
#include <random> |
||||
#endif |
||||
|
||||
template<typename T> |
||||
T myEpsilon(); |
||||
template<> |
||||
GLM_INLINE GLM_CONSTEXPR float myEpsilon<float>() { return 0.00001f; } |
||||
template<> |
||||
GLM_INLINE GLM_CONSTEXPR double myEpsilon<double>() { return 0.000001; } |
||||
|
||||
template<typename T> |
||||
T myEpsilon2(); |
||||
template<> |
||||
GLM_INLINE GLM_CONSTEXPR float myEpsilon2<float>() { return 0.01f; } |
||||
template<> |
||||
GLM_INLINE GLM_CONSTEXPR double myEpsilon2<double>() { return 0.000001; } |
||||
|
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b) |
||||
{ |
||||
for (int c = 0; c < D; ++c) |
||||
if (!glm::epsilonEqual(a[c], b[c], myEpsilon<T>())) |
||||
return false; |
||||
return true; |
||||
} |
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b) |
||||
{ |
||||
for (int c = 0; c < D; ++c) |
||||
for (int r = 0; r < D; ++r) |
||||
if (!glm::epsilonEqual(a[c][r], b[c][r], myEpsilon<T>())) |
||||
return false; |
||||
return true; |
||||
} |
||||
|
||||
template<typename T> |
||||
T failReport(T line) |
||||
{ |
||||
fprintf(stderr, "Failed in line %d\n", static_cast<int>(line)); |
||||
return line; |
||||
} |
||||
|
||||
// Test data: 1AGA 'agarose double helix'
|
||||
// https://www.rcsb.org/structure/1aga
|
||||
// The fourth coordinate is randomized
|
||||
namespace _1aga |
||||
{ |
||||
|
||||
// Fills `outTestData` with hard-coded atom positions from 1AGA
|
||||
// The fourth coordinate is randomized
|
||||
template<typename vec> |
||||
void fillTestData(std::vector<vec>& outTestData) |
||||
{ |
||||
// x,y,z coordinates copied from RCSB PDB file of 1AGA
|
||||
// w coordinate randomized with standard normal distribution
|
||||
static const double _1aga[] = { |
||||
3.219, -0.637, 19.462, 2.286, |
||||
4.519, 0.024, 18.980, -0.828, |
||||
4.163, 1.425, 18.481, -0.810, |
||||
3.190, 1.341, 17.330, -0.170, |
||||
1.962, 0.991, 18.165, 0.816, |
||||
2.093, 1.952, 19.331, 0.276, |
||||
5.119, -0.701, 17.908, -0.490, |
||||
3.517, 2.147, 19.514, -0.207, |
||||
2.970, 2.609, 16.719, 0.552, |
||||
2.107, -0.398, 18.564, 0.403, |
||||
2.847, 2.618, 15.335, 0.315, |
||||
1.457, 3.124, 14.979, 0.683, |
||||
1.316, 3.291, 13.473, 0.446, |
||||
2.447, 4.155, 12.931, 1.324, |
||||
3.795, 3.614, 13.394, 0.112, |
||||
4.956, 4.494, 12.982, 0.253, |
||||
0.483, 2.217, 15.479, 1.316, |
||||
0.021, 3.962, 13.166, 1.522, |
||||
2.311, 5.497, 13.395, 0.248, |
||||
3.830, 3.522, 14.827, 0.591, |
||||
5.150, 4.461, 11.576, 0.635, |
||||
-1.057, 3.106, 13.132, 0.191, |
||||
-2.280, 3.902, 12.650, 1.135, |
||||
-3.316, 2.893, 12.151, 0.794, |
||||
-2.756, 2.092, 11.000, 0.720, |
||||
-1.839, 1.204, 11.835, -1.172, |
||||
-2.737, 0.837, 13.001, -0.313, |
||||
-1.952, 4.784, 11.578, 2.082, |
||||
-3.617, 1.972, 13.184, 0.653, |
||||
-3.744, 1.267, 10.389, -0.413, |
||||
-0.709, 2.024, 12.234, -1.747, |
||||
-3.690, 1.156, 9.005, -1.275, |
||||
-3.434, -0.300, 8.649, 0.441, |
||||
-3.508, -0.506, 7.143, 0.237, |
||||
-4.822, 0.042, 6.601, -2.856, |
||||
-5.027, 1.480, 7.064, 0.985, |
||||
-6.370, 2.045, 6.652, 0.915, |
||||
-2.162, -0.690, 9.149, 1.100, |
||||
-3.442, -1.963, 6.836, -0.081, |
||||
-5.916, -0.747, 7.065, -2.345, |
||||
-4.965, 1.556, 8.497, 0.504, |
||||
-6.439, 2.230, 5.246, 1.451, |
||||
-2.161, -2.469, 6.802, -1.171, |
||||
-2.239, -3.925, 6.320, -1.434, |
||||
-0.847, -4.318, 5.821, 0.098, |
||||
-0.434, -3.433, 4.670, -1.446, |
||||
-0.123, -2.195, 5.505, 0.182, |
||||
0.644, -2.789, 6.671, 0.865, |
||||
-3.167, -4.083, 5.248, -0.098, |
||||
0.101, -4.119, 6.854, -0.001, |
||||
0.775, -3.876, 4.059, 1.061, |
||||
-1.398, -1.625, 5.904, 0.230, |
||||
0.844, -3.774, 2.675, 1.313, |
||||
1.977, -2.824, 2.319, -0.112, |
||||
2.192, -2.785, 0.813, -0.981, |
||||
2.375, -4.197, 0.271, -0.355, |
||||
1.232, -5.093, 0.734, 0.632, |
||||
1.414, -6.539, 0.322, 0.576, |
||||
1.678, -1.527, 2.819, -1.187, |
||||
3.421, -1.999, 0.496, -1.770, |
||||
3.605, -4.750, 0.735, 1.099, |
||||
1.135, -5.078, 2.167, 0.854, |
||||
1.289, -6.691, -1.084, -0.487, |
||||
-1.057, 3.106, 22.602, -1.297, |
||||
-2.280, 3.902, 22.120, 0.376, |
||||
-3.316, 2.893, 21.621, 0.932, |
||||
-2.756, 2.092, 20.470, 1.680, |
||||
-1.839, 1.204, 21.305, 0.615, |
||||
-2.737, 0.837, 22.471, 0.899, |
||||
-1.952, 4.784, 21.048, -0.521, |
||||
-3.617, 1.972, 22.654, 0.133, |
||||
-3.744, 1.267, 19.859, 0.081, |
||||
-0.709, 2.024, 21.704, 1.420, |
||||
-3.690, 1.156, 18.475, -0.850, |
||||
-3.434, -0.300, 18.119, -0.249, |
||||
-3.508, -0.506, 16.613, 1.434, |
||||
-4.822, 0.042, 16.071, -2.466, |
||||
-5.027, 1.480, 16.534, -1.045, |
||||
-6.370, 2.045, 16.122, 1.707, |
||||
-2.162, -0.690, 18.619, -2.023, |
||||
-3.442, -1.963, 16.336, -0.304, |
||||
-5.916, -0.747, 16.535, 0.979, |
||||
-4.965, 1.556, 17.967, -1.165, |
||||
-6.439, 2.230, 14.716, 0.929, |
||||
-2.161, -2.469, 16.302, -0.234, |
||||
-2.239, -3.925, 15.820, -0.228, |
||||
-0.847, -4.318, 15.321, 1.844, |
||||
-0.434, -3.433, 14.170, 1.132, |
||||
-0.123, -2.195, 15.005, 0.211, |
||||
0.644, -2.789, 16.171, -0.632, |
||||
-3.167, -4.083, 14.748, -0.519, |
||||
0.101, -4.119, 16.354, 0.173, |
||||
0.775, -3.876, 13.559, 1.243, |
||||
-1.398, -1.625, 15.404, -0.187, |
||||
0.844, -3.774, 12.175, -1.332, |
||||
1.977, -2.824, 11.819, -1.616, |
||||
2.192, -2.785, 10.313, 1.320, |
||||
2.375, -4.197, 9.771, 0.237, |
||||
1.232, -5.093, 10.234, 0.851, |
||||
1.414, -6.539, 9.822, 1.816, |
||||
1.678, -1.527, 12.319, -1.657, |
||||
3.421, -1.999, 10.036, 1.559, |
||||
3.605, -4.750, 10.235, 0.831, |
||||
1.135, -5.078, 11.667, 0.060, |
||||
1.289, -6.691, 8.416, 1.066, |
||||
3.219, -0.637, 10.002, 2.111, |
||||
4.519, 0.024, 9.520, -0.874, |
||||
4.163, 1.425, 9.021, -1.012, |
||||
3.190, 1.341, 7.870, -0.250, |
||||
1.962, 0.991, 8.705, -1.359, |
||||
2.093, 1.952, 9.871, -0.126, |
||||
5.119, -0.701, 8.448, 0.995, |
||||
3.517, 2.147, 10.054, 0.941, |
||||
2.970, 2.609, 7.259, -0.562, |
||||
2.107, -0.398, 9.104, -0.038, |
||||
2.847, 2.618, 5.875, 0.398, |
||||
1.457, 3.124, 5.519, 0.481, |
||||
1.316, 3.291, 4.013, -0.187, |
||||
2.447, 4.155, 3.471, -0.429, |
||||
3.795, 3.614, 3.934, -0.432, |
||||
4.956, 4.494, 3.522, -0.788, |
||||
0.483, 2.217, 6.019, -0.923, |
||||
0.021, 3.962, 3.636, -0.316, |
||||
2.311, 5.497, 3.935, -1.917, |
||||
3.830, 3.522, 5.367, -0.302, |
||||
5.150, 4.461, 2.116, -1.615 |
||||
}; |
||||
static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); |
||||
|
||||
outTestData.resize(_1agaSize); |
||||
for(glm::length_t i = 0; i < _1agaSize; ++i) |
||||
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) |
||||
outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]); |
||||
} |
||||
|
||||
void getExpectedCovarDataPtr(const double*& ptr) |
||||
{ |
||||
static const double _1agaCovar4x4d[] = { |
||||
9.624340680272107, -0.000066573696146, -4.293213765684049, 0.018793741874528, |
||||
-0.000066573696146, 9.624439378684805, 5.351138726379443, -0.115692591458806, |
||||
-4.293213765684049, 5.351138726379443, 35.628485496346691, 0.908742392542202, |
||||
0.018793741874528, -0.115692591458806, 0.908742392542202, 1.097059718568909 |
||||
}; |
||||
ptr = _1agaCovar4x4d; |
||||
} |
||||
void getExpectedCovarDataPtr(const float*& ptr) |
||||
{ |
||||
// note: the value difference to `_1agaCovar4x4d` is due to the numeric error propagation during computation of the covariance matrix.
|
||||
static const float _1agaCovar4x4f[] = { |
||||
9.624336242675781f, -0.000066711785621f, -4.293214797973633f, 0.018793795257807f, |
||||
-0.000066711785621f, 9.624438285827637f, 5.351140022277832f, -0.115692682564259f, |
||||
-4.293214797973633f, 5.351140022277832f, 35.628479003906250f, 0.908742427825928f, |
||||
0.018793795257807f, -0.115692682564259f, 0.908742427825928f, 1.097059369087219f |
||||
}; |
||||
ptr = _1agaCovar4x4f; |
||||
} |
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
int checkCovarMat(glm::mat<D, D, T, Q> const& covarMat) |
||||
{ |
||||
const T* expectedCovarData = GLM_NULLPTR; |
||||
getExpectedCovarDataPtr(expectedCovarData); |
||||
for(glm::length_t x = 0; x < D; ++x) |
||||
for(glm::length_t y = 0; y < D; ++y) |
||||
if(!glm::equal(covarMat[y][x], expectedCovarData[x * 4 + y], myEpsilon<T>())) |
||||
{ |
||||
fprintf(stderr, "E: %.15lf != %.15lf ; diff: %.20lf\n", |
||||
static_cast<double>(covarMat[y][x]), |
||||
static_cast<double>(expectedCovarData[x * 4 + y]), |
||||
static_cast<double>(covarMat[y][x] - expectedCovarData[x * 4 + y]) |
||||
); |
||||
return failReport(__LINE__); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
template<glm::length_t D, typename T> void getExpectedEigenvaluesEigenvectorsDataPtr(const T*& evals, const T*& evecs); |
||||
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<2, float>(const float*& evals, const float*& evecs) |
||||
{ |
||||
static const float expectedEvals[] = { |
||||
9.624471664428711f, 9.624302864074707f |
||||
}; |
||||
static const float expectedEvecs[] = { |
||||
-0.443000972270966f, 0.896521151065826f, |
||||
0.896521151065826f, 0.443000972270966f |
||||
}; |
||||
evals = expectedEvals; |
||||
evecs = expectedEvecs; |
||||
} |
||||
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<2, double>(const double*& evals, const double*& evecs) |
||||
{ |
||||
static const double expectedEvals[] = { |
||||
9.624472899262972, 9.624307159693940 |
||||
}; |
||||
static const double expectedEvecs[] = { |
||||
-0.449720461624363, 0.893169360421846, |
||||
0.893169360421846, 0.449720461624363 |
||||
}; |
||||
evals = expectedEvals; |
||||
evecs = expectedEvecs; |
||||
} |
||||
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<3, float>(const float*& evals, const float*& evecs) |
||||
{ |
||||
static const float expectedEvals[] = { |
||||
37.327442169189453f, 9.624311447143555f, 7.925499439239502f |
||||
}; |
||||
static const float expectedEvecs[] = { |
||||
-0.150428697466850f, 0.187497511506081f, 0.970678031444550f, |
||||
0.779980957508087f, 0.625803351402283f, -0.000005212802080f, |
||||
0.607454538345337f, -0.757109522819519f, 0.240383237600327f |
||||
}; |
||||
evals = expectedEvals; |
||||
evecs = expectedEvecs; |
||||
} |
||||
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<3, double>(const double*& evals, const double*& evecs) |
||||
{ |
||||
static const double expectedEvals[] = { |
||||
37.327449427468345, 9.624314341614987, 7.925501786220276 |
||||
}; |
||||
static const double expectedEvecs[] = { |
||||
-0.150428640509585, 0.187497426513576, 0.970678082149394, |
||||
0.779981605126846, 0.625802441381904, -0.000004919018357, |
||||
0.607453635908278, -0.757110308615089, 0.240383154173870 |
||||
}; |
||||
evals = expectedEvals; |
||||
evecs = expectedEvecs; |
||||
} |
||||
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<4, float>(const float*& evals, const float*& evecs) |
||||
{ |
||||
static const float expectedEvals[] = { |
||||
37.347740173339844f, 9.624703407287598f, 7.940164566040039f, 1.061712265014648f |
||||
}; |
||||
static const float expectedEvecs[] = { |
||||
-0.150269940495491f, 0.187220811843872f, 0.970467865467072f, 0.023652425035834f, |
||||
0.779159665107727f, 0.626788496971130f, -0.000105984276161f, -0.006797631736845f, |
||||
0.608242213726044f, -0.755563497543335f, 0.238818943500519f, 0.046158745884895f, |
||||
-0.019251370802522f, 0.034755907952785f, -0.034024771302938f, 0.998630762100220f, |
||||
}; |
||||
evals = expectedEvals; |
||||
evecs = expectedEvecs; |
||||
} |
||||
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<4, double>(const double*& evals, const double*& evecs) |
||||
{ |
||||
static const double expectedEvals[] = { |
||||
37.347738991879226, 9.624706889211053, 7.940170752816341, 1.061708639965897 |
||||
}; |
||||
static const double expectedEvecs[] = { |
||||
-0.150269954805403, 0.187220917596058, 0.970467838469868, 0.023652551509145, |
||||
0.779159831346545, 0.626788431871120, -0.000105940250315, -0.006797622027466, |
||||
0.608241962267880, -0.755563776664248, 0.238818902950296, 0.046158707986616, |
||||
-0.019251317755512, 0.034755849578017, -0.034024915369495, 0.998630924225204, |
||||
}; |
||||
evals = expectedEvals; |
||||
evecs = expectedEvecs; |
||||
} |
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
int checkEigenvaluesEigenvectors( |
||||
glm::vec<D, T, Q> const& evals, |
||||
glm::mat<D, D, T, Q> const& evecs) |
||||
{ |
||||
const T* expectedEvals = GLM_NULLPTR; |
||||
const T* expectedEvecs = GLM_NULLPTR; |
||||
getExpectedEigenvaluesEigenvectorsDataPtr<D, T>(expectedEvals, expectedEvecs); |
||||
|
||||
for(int i = 0; i < D; ++i) |
||||
if(!glm::equal(evals[i], expectedEvals[i], myEpsilon<T>())) |
||||
return failReport(__LINE__); |
||||
|
||||
for (int i = 0; i < D; ++i) |
||||
for (int d = 0; d < D; ++d) |
||||
if (!glm::equal(evecs[i][d], expectedEvecs[i * D + d], myEpsilon2<T>())) |
||||
{ |
||||
fprintf(stderr, "E: %.15lf != %.15lf ; diff: %.20lf\n", |
||||
static_cast<double>(evecs[i][d]), |
||||
static_cast<double>(expectedEvecs[i * D + d]), |
||||
static_cast<double>(evecs[i][d] - expectedEvecs[i * D + d]) |
||||
); |
||||
return failReport(__LINE__); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
} // namespace _1aga
|
||||
|
||||
// Compute center of gravity
|
||||
template<typename vec> |
||||
vec computeCenter(const std::vector<vec>& testData) |
||||
{ |
||||
double c[4]; |
||||
std::fill(c, c + vec::length(), 0.0); |
||||
|
||||
typename std::vector<vec>::const_iterator e = testData.end(); |
||||
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) |
||||
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) |
||||
c[d] += static_cast<double>((*i)[d]); |
||||
|
||||
vec cVec(0); |
||||
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) |
||||
cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size())); |
||||
return cVec; |
||||
} |
||||
|
||||
// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search.
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
int testEigenvalueSort() |
||||
{ |
||||
// Test input data: four arbitrary values
|
||||
static const glm::vec<D, T, Q> refVal( |
||||
glm::vec<4, T, Q>( |
||||
10, 8, 6, 4 |
||||
) |
||||
); |
||||
// Test input data: four arbitrary vectors, which can be matched to the above values
|
||||
static const glm::mat<D, D, T, Q> refVec( |
||||
glm::mat<4, 4, T, Q>( |
||||
10, 20, 5, 40, |
||||
8, 16, 4, 32, |
||||
6, 12, 3, 24, |
||||
4, 8, 2, 16 |
||||
) |
||||
); |
||||
// Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4)
|
||||
static const int permutationCount[] = { |
||||
0, |
||||
1, |
||||
2, |
||||
6, |
||||
24 |
||||
}; |
||||
// The permutations t perform, based on `D` (1 <= D <= 4)
|
||||
static const glm::ivec4 permutation[] = { |
||||
glm::ivec4(0, 1, 2, 3), |
||||
glm::ivec4(1, 0, 2, 3), // last for D = 2
|
||||
glm::ivec4(0, 2, 1, 3), |
||||
glm::ivec4(1, 2, 0, 3), |
||||
glm::ivec4(2, 0, 1, 3), |
||||
glm::ivec4(2, 1, 0, 3), // last for D = 3
|
||||
glm::ivec4(0, 1, 3, 2), |
||||
glm::ivec4(1, 0, 3, 2), |
||||
glm::ivec4(0, 2, 3, 1), |
||||
glm::ivec4(1, 2, 3, 0), |
||||
glm::ivec4(2, 0, 3, 1), |
||||
glm::ivec4(2, 1, 3, 0), |
||||
glm::ivec4(0, 3, 1, 2), |
||||
glm::ivec4(1, 3, 0, 2), |
||||
glm::ivec4(0, 3, 2, 1), |
||||
glm::ivec4(1, 3, 2, 0), |
||||
glm::ivec4(2, 3, 0, 1), |
||||
glm::ivec4(2, 3, 1, 0), |
||||
glm::ivec4(3, 0, 1, 2), |
||||
glm::ivec4(3, 1, 0, 2), |
||||
glm::ivec4(3, 0, 2, 1), |
||||
glm::ivec4(3, 1, 2, 0), |
||||
glm::ivec4(3, 2, 0, 1), |
||||
glm::ivec4(3, 2, 1, 0) // last for D = 4
|
||||
}; |
||||
|
||||
// initial sanity check
|
||||
if(!vectorEpsilonEqual(refVal, refVal)) |
||||
return failReport(__LINE__); |
||||
if(!matrixEpsilonEqual(refVec, refVec)) |
||||
return failReport(__LINE__); |
||||
|
||||
// Exhaustive search through all permutations
|
||||
for(int p = 0; p < permutationCount[D]; ++p) |
||||
{ |
||||
glm::vec<D, T, Q> testVal; |
||||
glm::mat<D, D, T, Q> testVec; |
||||
for(int i = 0; i < D; ++i) |
||||
{ |
||||
testVal[i] = refVal[permutation[p][i]]; |
||||
testVec[i] = refVec[permutation[p][i]]; |
||||
} |
||||
|
||||
glm::sortEigenvalues(testVal, testVec); |
||||
|
||||
if (!vectorEpsilonEqual(testVal, refVal)) |
||||
return failReport(__LINE__); |
||||
if (!matrixEpsilonEqual(testVec, refVec)) |
||||
return failReport(__LINE__); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
// Test covariance matrix creation functions
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
int testCovar( |
||||
#if GLM_HAS_CXX11_STL == 1 |
||||
glm::length_t dataSize, unsigned int randomEngineSeed |
||||
#else // GLM_HAS_CXX11_STL == 1
|
||||
glm::length_t, unsigned int |
||||
#endif // GLM_HAS_CXX11_STL == 1
|
||||
) |
||||
{ |
||||
typedef glm::vec<D, T, Q> vec; |
||||
typedef glm::mat<D, D, T, Q> mat; |
||||
|
||||
// #1: test expected result with fixed data set
|
||||
std::vector<vec> testData; |
||||
_1aga::fillTestData(testData); |
||||
|
||||
// compute center of gravity
|
||||
vec center = computeCenter(testData); |
||||
|
||||
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); |
||||
if(_1aga::checkCovarMat(covarMat)) |
||||
{ |
||||
fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str()); |
||||
return failReport(__LINE__); |
||||
} |
||||
|
||||
// #2: test function variant consitency with random data
|
||||
#if GLM_HAS_CXX11_STL == 1 |
||||
std::default_random_engine rndEng(randomEngineSeed); |
||||
std::normal_distribution<T> normalDist; |
||||
testData.resize(dataSize); |
||||
// some common offset of all data
|
||||
T offset[D]; |
||||
for(glm::length_t d = 0; d < D; ++d) |
||||
offset[d] = normalDist(rndEng); |
||||
// init data
|
||||
for(glm::length_t i = 0; i < dataSize; ++i) |
||||
for(glm::length_t d = 0; d < D; ++d) |
||||
testData[i][d] = offset[d] + normalDist(rndEng); |
||||
center = computeCenter(testData); |
||||
|
||||
std::vector<vec> centeredTestData; |
||||
centeredTestData.reserve(testData.size()); |
||||
typename std::vector<vec>::const_iterator e = testData.end(); |
||||
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) |
||||
centeredTestData.push_back((*i) - center); |
||||
|
||||
mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size()); |
||||
mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end()); |
||||
mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); |
||||
mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center); |
||||
|
||||
if(!matrixEpsilonEqual(c1, c2)) |
||||
return failReport(__LINE__); |
||||
if(!matrixEpsilonEqual(c1, c3)) |
||||
return failReport(__LINE__); |
||||
if(!matrixEpsilonEqual(c1, c4)) |
||||
return failReport(__LINE__); |
||||
#endif // GLM_HAS_CXX11_STL == 1
|
||||
return 0; |
||||
} |
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q> |
||||
int testEigenvectors() |
||||
{ |
||||
typedef glm::vec<D, T, Q> vec; |
||||
typedef glm::mat<D, D, T, Q> mat; |
||||
|
||||
// test expected result with fixed data set
|
||||
std::vector<vec> testData; |
||||
_1aga::fillTestData(testData); |
||||
vec center = computeCenter(testData); |
||||
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); |
||||
vec eigenvalues; |
||||
mat eigenvectors; |
||||
unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); |
||||
if(c != D) |
||||
return failReport(__LINE__); |
||||
glm::sortEigenvalues(eigenvalues, eigenvectors); |
||||
|
||||
if(_1aga::checkEigenvaluesEigenvectors(eigenvalues, eigenvectors) != 0) |
||||
return failReport(__LINE__); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/// A simple small smoke test:
|
||||
/// - a uniformly sampled block
|
||||
/// - reconstruct main axes
|
||||
/// - check order of eigenvalues equals order of extends of block in direction of main axes
|
||||
int smokeTest() |
||||
{ |
||||
using glm::vec3; |
||||
using glm::mat3; |
||||
std::vector<vec3> pts; |
||||
pts.reserve(11 * 15 * 7); |
||||
|
||||
for(int x = -5; x <= 5; ++x) |
||||
for(int y = -7; y <= 7; ++y) |
||||
for(int z = -3; z <= 3; ++z) |
||||
pts.push_back(vec3(x, y, z)); |
||||
|
||||
mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size()); |
||||
mat3 eVec; |
||||
vec3 eVal; |
||||
int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec); |
||||
if(eCnt != 3) |
||||
return failReport(__LINE__); |
||||
|
||||
// sort eVec by decending eVal
|
||||
if(eVal[0] < eVal[1]) |
||||
{ |
||||
std::swap(eVal[0], eVal[1]); |
||||
std::swap(eVec[0], eVec[1]); |
||||
} |
||||
if(eVal[0] < eVal[2]) |
||||
{ |
||||
std::swap(eVal[0], eVal[2]); |
||||
std::swap(eVec[0], eVec[2]); |
||||
} |
||||
if(eVal[1] < eVal[2]) |
||||
{ |
||||
std::swap(eVal[1], eVal[2]); |
||||
std::swap(eVec[1], eVec[2]); |
||||
} |
||||
|
||||
if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0))) |
||||
return failReport(__LINE__); |
||||
if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0))) |
||||
return failReport(__LINE__); |
||||
if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1))) |
||||
return failReport(__LINE__); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
#if GLM_HAS_CXX11_STL == 1 |
||||
int rndTest(unsigned int randomEngineSeed) |
||||
{ |
||||
std::default_random_engine rndEng(randomEngineSeed); |
||||
std::normal_distribution<double> normalDist; |
||||
|
||||
// construct orthonormal system
|
||||
glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
double l = glm::length(x); |
||||
while(l < myEpsilon<double>()) |
||||
x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
x = glm::normalize(x); |
||||
glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
l = glm::length(y); |
||||
while(l < myEpsilon<double>()) |
||||
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
while(glm::abs(glm::dot(x, y)) < myEpsilon<double>()) |
||||
{ |
||||
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
while(l < myEpsilon<double>()) |
||||
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
} |
||||
y = glm::normalize(y); |
||||
glm::dvec3 z = glm::normalize(glm::cross(x, y)); |
||||
y = glm::normalize(glm::cross(z, x)); |
||||
|
||||
//printf("\n");
|
||||
//printf("x: %.10lf, %.10lf, %.10lf\n", x.x, x.y, x.z);
|
||||
//printf("y: %.10lf, %.10lf, %.10lf\n", y.x, y.y, y.z);
|
||||
//printf("z: %.10lf, %.10lf, %.10lf\n", z.x, z.y, z.z);
|
||||
|
||||
// generate input point data
|
||||
std::vector<glm::dvec3> ptData; |
||||
static const int patters[] = { |
||||
8, 0, 0, |
||||
4, 1, 2, |
||||
0, 2, 0, |
||||
0, 0, 4 |
||||
}; |
||||
glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
||||
for(int p = 0; p < 4; ++p) |
||||
for(int xs = 1; xs >= -1; xs -= 2) |
||||
for(int ys = 1; ys >= -1; ys -= 2) |
||||
for(int zs = 1; zs >= -1; zs -= 2) |
||||
ptData.push_back( |
||||
offset |
||||
+ x * static_cast<double>(patters[p * 3 + 0] * xs) |
||||
+ y * static_cast<double>(patters[p * 3 + 1] * ys) |
||||
+ z * static_cast<double>(patters[p * 3 + 2] * zs)); |
||||
|
||||
// perform PCA:
|
||||
glm::dvec3 center = computeCenter(ptData); |
||||
glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); |
||||
glm::dvec3 evals; |
||||
glm::dmat3 evecs; |
||||
int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); |
||||
if(evcnt != 3) |
||||
return failReport(__LINE__); |
||||
glm::sortEigenvalues(evals, evecs); |
||||
|
||||
//printf("\n");
|
||||
//printf("evec0: %.10lf, %.10lf, %.10lf\n", evecs[0].x, evecs[0].y, evecs[0].z);
|
||||
//printf("evec2: %.10lf, %.10lf, %.10lf\n", evecs[2].x, evecs[2].y, evecs[2].z);
|
||||
//printf("evec1: %.10lf, %.10lf, %.10lf\n", evecs[1].x, evecs[1].y, evecs[1].z);
|
||||
|
||||
if(glm::length(glm::abs(x) - glm::abs(evecs[0])) > myEpsilon<double>()) |
||||
return failReport(__LINE__); |
||||
if(glm::length(glm::abs(y) - glm::abs(evecs[2])) > myEpsilon<double>()) |
||||
return failReport(__LINE__); |
||||
if(glm::length(glm::abs(z) - glm::abs(evecs[1])) > myEpsilon<double>()) |
||||
return failReport(__LINE__); |
||||
|
||||
return 0; |
||||
} |
||||
#endif // GLM_HAS_CXX11_STL == 1
|
||||
|
||||
int main() |
||||
{ |
||||
int error(0); |
||||
|
||||
// A small smoke test to fail early with most problems
|
||||
if(smokeTest()) |
||||
return failReport(__LINE__); |
||||
|
||||
// test sorting utility.
|
||||
if(testEigenvalueSort<2, float, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvalueSort<2, double, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvalueSort<3, float, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvalueSort<3, double, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvalueSort<4, float, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvalueSort<4, double, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if (error != 0) |
||||
return error; |
||||
|
||||
// Note: the random engine uses a fixed seed to create consistent and reproducible test data
|
||||
// test covariance matrix computation from different data sources
|
||||
if(testCovar<2, float, glm::defaultp>(100, 12345) != 0) |
||||
error = failReport(__LINE__); |
||||
if(testCovar<2, double, glm::defaultp>(100, 42) != 0) |
||||
error = failReport(__LINE__); |
||||
if(testCovar<3, float, glm::defaultp>(100, 2021) != 0) |
||||
error = failReport(__LINE__); |
||||
if(testCovar<3, double, glm::defaultp>(100, 815) != 0) |
||||
error = failReport(__LINE__); |
||||
if(testCovar<4, float, glm::defaultp>(100, 3141) != 0) |
||||
error = failReport(__LINE__); |
||||
if(testCovar<4, double, glm::defaultp>(100, 174) != 0) |
||||
error = failReport(__LINE__); |
||||
if (error != 0) |
||||
return error; |
||||
|
||||
// test PCA eigen vector reconstruction
|
||||
if(testEigenvectors<2, float, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvectors<2, double, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvectors<3, float, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvectors<3, double, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvectors<4, float, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(testEigenvectors<4, double, glm::defaultp>() != 0) |
||||
error = failReport(__LINE__); |
||||
if(error != 0) |
||||
return error; |
||||
|
||||
// Final tests with randomized data
|
||||
#if GLM_HAS_CXX11_STL == 1 |
||||
if(rndTest(12345) != 0) |
||||
error = failReport(__LINE__); |
||||
if(rndTest(42) != 0) |
||||
error = failReport(__LINE__); |
||||
if (error != 0) |
||||
return error; |
||||
#endif // GLM_HAS_CXX11_STL == 1
|
||||
|
||||
return error; |
||||
} |
Loading…
Reference in New Issue