From 284ba46dae3d4c695a87a9556d0045f54d0e16ae Mon Sep 17 00:00:00 2001 From: Christophe Riccio Date: Sun, 12 Oct 2014 02:32:04 +0200 Subject: [PATCH] Fixed spaces --- glm/gtx/matrix_decompose.inl | 277 +++++++++++++++++------------------ 1 file changed, 138 insertions(+), 139 deletions(-) diff --git a/glm/gtx/matrix_decompose.inl b/glm/gtx/matrix_decompose.inl index 0b66be0a..39c4a87e 100644 --- a/glm/gtx/matrix_decompose.inl +++ b/glm/gtx/matrix_decompose.inl @@ -36,20 +36,20 @@ namespace glm tvec3 const & b, T ascl, T bscl) { - return (a * ascl) + (b * bscl); + return (a * ascl) + (b * bscl); } template - GLM_FUNC_QUALIFIER void v3Scale(tvec3 & v, T desiredLength) + GLM_FUNC_QUALIFIER void v3Scale(tvec3 & v, T desiredLength) { - T len = glm::length(v); - if(len != 0) - { - T l = desiredLength / len; - v[0] *= l; - v[1] *= l; - v[2] *= l; - } + T len = glm::length(v); + if(len != 0) + { + T l = desiredLength / len; + v[0] *= l; + v[1] *= l; + v[2] *= l; + } } /** @@ -64,29 +64,29 @@ namespace glm { tmat4x4 LocalMatrix(ModelMatrix); - // Normalize the matrix. - if(LocalMatrix[3][3] == static_cast(0)) - return false; + // Normalize the matrix. + if(LocalMatrix[3][3] == static_cast(0)) + return false; - for(length_t i = 0; i < 4; i++) - for(length_t j = 0; j < 4; j++) + for(length_t i = 0; i < 4; ++i) + for(length_t j = 0; j < 4; ++j) LocalMatrix[i][j] /= LocalMatrix[3][3]; // perspectiveMatrix is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. tmat4x4 PerspectiveMatrix(LocalMatrix); - for(length_t i = 0; i < 3; i++) - PerspectiveMatrix[i][3] = 0; - PerspectiveMatrix[3][3] = 1; + for(length_t i = 0; i < 3; i++) + PerspectiveMatrix[i][3] = 0; + PerspectiveMatrix[3][3] = 1; - /// TODO: Fixme! - if(determinant(PerspectiveMatrix) == static_cast(0)) - return false; + /// TODO: Fixme! + if(determinant(PerspectiveMatrix) == static_cast(0)) + return false; - // First, isolate perspective. This is the messiest. - if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0) - { + // First, isolate perspective. This is the messiest. + if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0) + { // rightHandSide is the right hand side of the equation. tvec4 RightHandSide; RightHandSide[0] = LocalMatrix[0][3]; @@ -106,122 +106,121 @@ namespace glm // Clear the perspective partition LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0; LocalMatrix[3][3] = 1; - } - else - { + } + else + { // No perspective. Perspective = tvec4(0, 0, 0, 1); - } - - // Next take care of translation (easy). - Translation = tvec3(LocalMatrix[3]); - LocalMatrix[3] = tvec4(0, 0, 0, LocalMatrix[3].w); - - tvec3 Row[3], Pdum3; - - // Now get scale and shear. - for(length_t i = 0; i < 3; ++i) - Row[i] = LocalMatrix[i]; - - // Compute X scale factor and normalize first row. - Scale.x = length(Row[0]);// v3Length(Row[0]); - - v3Scale(Row[0], 1.0); - - // Compute XY shear factor and make 2nd row orthogonal to 1st. - Skew.z = dot(Row[0], Row[1]); - Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z); - - // Now, compute Y scale and normalize 2nd row. - Scale.y = length(Row[1]); - v3Scale(Row[1], 1.0); - Skew.z /= Scale.y; - - // Compute XZ and YZ shears, orthogonalize 3rd row. - Skew.y = glm::dot(Row[0], Row[2]); - Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y); - Skew.x = glm::dot(Row[1], Row[2]); - Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x); - - // Next, get Z scale and normalize 3rd row. - Scale.z = length(Row[2]); - v3Scale(Row[2], 1.0); - Skew.y /= Scale.z; - Skew.x /= Scale.z; - - // At this point, the matrix (in rows[]) is orthonormal. - // Check for a coordinate system flip. If the determinant - // is -1, then negate the matrix and the scaling factors. - Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); - if(dot(Row[0], Pdum3) < 0) - { - for(length_t i = 0; i < 3; i++) - { - Scale.x *= static_cast(-1); - Row[i] *= static_cast(-1); - } - } - - // Now, get the rotations out, as described in the gem. - - // FIXME - Add the ability to return either quaternions (which are - // easier to recompose with) or Euler angles (rx, ry, rz), which - // are easier for authors to deal with. The latter will only be useful - // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I - // will leave the Euler angle code here for now. - - // ret.rotateY = asin(-Row[0][2]); - // if (cos(ret.rotateY) != 0) { - // ret.rotateX = atan2(Row[1][2], Row[2][2]); - // ret.rotateZ = atan2(Row[0][1], Row[0][0]); - // } else { - // ret.rotateX = atan2(-Row[2][0], Row[1][1]); - // ret.rotateZ = 0; - // } - - T s, t, x, y, z, w; - - t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0; - - if(t > 1e-4) - { - s = 0.5 / sqrt(t); - w = 0.25 / s; - x = (Row[2][1] - Row[1][2]) * s; - y = (Row[0][2] - Row[2][0]) * s; - z = (Row[1][0] - Row[0][1]) * s; - } - else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) - { - s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx - x = 0.25 * s; - y = (Row[0][1] + Row[1][0]) / s; - z = (Row[0][2] + Row[2][0]) / s; - w = (Row[2][1] - Row[1][2]) / s; - } - else if(Row[1][1] > Row[2][2]) - { - s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy - x = (Row[0][1] + Row[1][0]) / s; - y = 0.25 * s; - z = (Row[1][2] + Row[2][1]) / s; - w = (Row[0][2] - Row[2][0]) / s; - } - else - { - s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz - x = (Row[0][2] + Row[2][0]) / s; - y = (Row[1][2] + Row[2][1]) / s; - z = 0.25 * s; - w = (Row[1][0] - Row[0][1]) / s; - } - - Orientation.x = x; - Orientation.y = y; - Orientation.z = z; - Orientation.w = w; - - return true; - + } + + // Next take care of translation (easy). + Translation = tvec3(LocalMatrix[3]); + LocalMatrix[3] = tvec4(0, 0, 0, LocalMatrix[3].w); + + tvec3 Row[3], Pdum3; + + // Now get scale and shear. + for(length_t i = 0; i < 3; ++i) + Row[i] = LocalMatrix[i]; + + // Compute X scale factor and normalize first row. + Scale.x = length(Row[0]);// v3Length(Row[0]); + + v3Scale(Row[0], 1.0); + + // Compute XY shear factor and make 2nd row orthogonal to 1st. + Skew.z = dot(Row[0], Row[1]); + Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z); + + // Now, compute Y scale and normalize 2nd row. + Scale.y = length(Row[1]); + v3Scale(Row[1], 1.0); + Skew.z /= Scale.y; + + // Compute XZ and YZ shears, orthogonalize 3rd row. + Skew.y = glm::dot(Row[0], Row[2]); + Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y); + Skew.x = glm::dot(Row[1], Row[2]); + Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x); + + // Next, get Z scale and normalize 3rd row. + Scale.z = length(Row[2]); + v3Scale(Row[2], 1.0); + Skew.y /= Scale.z; + Skew.x /= Scale.z; + + // At this point, the matrix (in rows[]) is orthonormal. + // Check for a coordinate system flip. If the determinant + // is -1, then negate the matrix and the scaling factors. + Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); + if(dot(Row[0], Pdum3) < 0) + { + for(length_t i = 0; i < 3; i++) + { + Scale.x *= static_cast(-1); + Row[i] *= static_cast(-1); + } + } + + // Now, get the rotations out, as described in the gem. + + // FIXME - Add the ability to return either quaternions (which are + // easier to recompose with) or Euler angles (rx, ry, rz), which + // are easier for authors to deal with. The latter will only be useful + // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I + // will leave the Euler angle code here for now. + + // ret.rotateY = asin(-Row[0][2]); + // if (cos(ret.rotateY) != 0) { + // ret.rotateX = atan2(Row[1][2], Row[2][2]); + // ret.rotateZ = atan2(Row[0][1], Row[0][0]); + // } else { + // ret.rotateX = atan2(-Row[2][0], Row[1][1]); + // ret.rotateZ = 0; + // } + + T s, t, x, y, z, w; + + t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0; + + if(t > 1e-4) + { + s = 0.5 / sqrt(t); + w = 0.25 / s; + x = (Row[2][1] - Row[1][2]) * s; + y = (Row[0][2] - Row[2][0]) * s; + z = (Row[1][0] - Row[0][1]) * s; + } + else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) + { + s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx + x = 0.25 * s; + y = (Row[0][1] + Row[1][0]) / s; + z = (Row[0][2] + Row[2][0]) / s; + w = (Row[2][1] - Row[1][2]) / s; + } + else if(Row[1][1] > Row[2][2]) + { + s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy + x = (Row[0][1] + Row[1][0]) / s; + y = 0.25 * s; + z = (Row[1][2] + Row[2][1]) / s; + w = (Row[0][2] - Row[2][0]) / s; + } + else + { + s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz + x = (Row[0][2] + Row[2][0]) / s; + y = (Row[1][2] + Row[2][1]) / s; + z = 0.25 * s; + w = (Row[1][0] - Row[0][1]) / s; + } + + Orientation.x = x; + Orientation.y = y; + Orientation.z = z; + Orientation.w = w; + + return true; } }//namespace glm