diff --git a/glm/core/func_packing.hpp b/glm/core/func_packing.hpp
index 4ce811a1..221f3aca 100644
--- a/glm/core/func_packing.hpp
+++ b/glm/core/func_packing.hpp
@@ -41,80 +41,80 @@ namespace glm
/// @addtogroup core_func_packing
/// @{
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packUnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packUnorm2x16(vec2 const & v);
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packSnorm2x16: round(clamp(v, -1, +1) * 32767.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x16: round(clamp(v, -1, +1) * 32767.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packSnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packSnorm2x16(vec2 const & v);
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packUnorm4x8 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packUnorm4x8(vec4 const & v);
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packSnorm4x8 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packSnorm4x8(vec4 const & v);
- //! First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
- //! Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
- //!
- //! The conversion for unpacked fixed-point value f to floating point is done as follows:
- //! unpackUnorm2x16: f / 65535.0
- //!
- //! The first component of the returned vector will be extracted from the least significant bits of the input;
- //! the last component will be extracted from the most significant bits.
- //!
+ /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm2x16: f / 65535.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
/// @see GLSL unpackUnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL vec2 unpackUnorm2x16(uint32 const & p);
- //! First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
- //! Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
- //!
- //! The conversion for unpacked fixed-point value f to floating point is done as follows:
- //! unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
- //!
- //! The first component of the returned vector will be extracted from the least significant bits of the input;
- //! the last component will be extracted from the most significant bits.
- //!
+ /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
/// @see GLSL unpackSnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL vec2 unpackSnorm2x16(uint32 const & p);
diff --git a/glm/core/func_packing.inl b/glm/core/func_packing.inl
index ce22d4e9..2ee447e1 100644
--- a/glm/core/func_packing.inl
+++ b/glm/core/func_packing.inl
@@ -40,9 +40,7 @@ namespace glm
uint32 Mask16((1 << 16) - 1);
uint32 A((p >> 0) & Mask16);
uint32 B((p >> 16) & Mask16);
- return vec2(
- A * 1.0f / 65535.0f,
- B * 1.0f / 65535.0f);
+ return vec2(A, B) * float(1.5259021896696421759365224689097e-5); // 1.0 / 65535.0
}
GLM_FUNC_QUALIFIER uint32 packSnorm2x16(vec2 const & v)
@@ -53,9 +51,9 @@ namespace glm
uint16 u;
} A, B;
- vec2 Unpack = clamp(v ,-1.0f, 1.0f) * 32767.0f;
- A.i = detail::int16(round(Unpack.x));
- B.i = detail::int16(round(Unpack.y));
+ vec2 Unpack = round(clamp(v ,-1.0f, 1.0f) * 32767.0f);
+ A.i = detail::int16(Unpack.x);
+ B.i = detail::int16(Unpack.y);
uint32 Pack = (uint32(B.u) << 16) | (uint32(A.u) << 0);
return Pack;
}
diff --git a/glm/core/func_vector_relational.hpp b/glm/core/func_vector_relational.hpp
index c7e8b458..609bc601 100644
--- a/glm/core/func_vector_relational.hpp
+++ b/glm/core/func_vector_relational.hpp
@@ -54,8 +54,9 @@ namespace glm
///
/// @see GLSL lessThan man page
/// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions
- template class vecType>
- GLM_FUNC_DECL typename vecType::bool_type lessThan(vecType const & x, vecType const & y);
+ // TODO: Mismatched
+ //template class vecType>
+ //GLM_FUNC_DECL typename vecType::bool_type lessThan(vecType const & x, vecType const & y);
/// Returns the component-wise comparison of result x <= y.
///
@@ -90,8 +91,9 @@ namespace glm
///
/// @see GLSL equal man page
/// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions
- template class vecType>
- GLM_FUNC_DECL typename vecType::bool_type equal(vecType const & x, vecType const & y);
+ //TODO: conflicts with definision
+ //template class vecType>
+ //GLM_FUNC_DECL typename vecType::bool_type equal(vecType const & x, vecType const & y);
/// Returns the component-wise comparison of result x != y.
///
diff --git a/glm/gtc/packing.hpp b/glm/gtc/packing.hpp
new file mode 100644
index 00000000..9433d54e
--- /dev/null
+++ b/glm/gtc/packing.hpp
@@ -0,0 +1,478 @@
+///////////////////////////////////////////////////////////////////////////////////
+/// OpenGL Mathematics (glm.g-truc.net)
+///
+/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
+/// Permission is hereby granted, free of charge, to any person obtaining a copy
+/// of this software and associated documentation files (the "Software"), to deal
+/// in the Software without restriction, including without limitation the rights
+/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+/// copies of the Software, and to permit persons to whom the Software is
+/// furnished to do so, subject to the following conditions:
+///
+/// The above copyright notice and this permission notice shall be included in
+/// all copies or substantial portions of the Software.
+///
+/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+/// THE SOFTWARE.
+///
+/// @ref gtc_packing
+/// @file glm/gtc/packing.hpp
+/// @date 2013-08-08 / 2013-08-08
+/// @author Christophe Riccio
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_packing GLM_GTC_packing
+/// @ingroup gtc
+///
+/// @brief This extension provides a set of function to convert vertors to packed
+/// formats.
+///
+/// need to be included to use these features.
+///////////////////////////////////////////////////////////////////////////////////
+
+#ifndef GLM_GTC_packing
+#define GLM_GTC_packing GLM_VERSION
+
+// Dependency:
+#include "../glm.hpp"
+
+#if(defined(GLM_MESSAGES) && !defined(glm_ext))
+# pragma message("GLM: GLM_GTC_packing extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_packing
+ /// @{
+
+ /// First, converts the normalized floating-point value v into a 8-bit integer value.
+ /// Then, the results are packed into the returned 8-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm2x8(vec2 const & v)
+ /// @see uint32 packUnorm4x8(vec4 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint8 packUnorm1x8(float const & v);
+
+ /// Convert a single 8-bit integer to a normalized floating-point value.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm4x8: f / 255.0
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackUnorm2x8(uint16 p)
+ /// @see vec4 unpackUnorm4x8(uint32 p)
+ /// @see GLSL unpackUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackUnorm1x8(uint8 pdf);
+
+ /// First, converts each component of the normalized floating-point value v into 8-bit integer values.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm2x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packUnorm1x8(float const & v)
+ /// @see uint32 packUnorm4x8(vec4 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm4x8: f / 255.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackUnorm1x8(uint8 v)
+ /// @see vec4 unpackUnorm4x8(uint32 p)
+ /// @see GLSL unpackUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p);
+
+ /// First, converts the normalized floating-point value v into 8-bit integer value.
+ /// Then, the results are packed into the returned 8-bit unsigned integer.
+ ///
+ /// The conversion to fixed point is done as follows:
+ /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm2x8(vec2 const & v)
+ /// @see uint32 packSnorm4x8(vec4 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint8 packSnorm1x8(float const & s);
+
+ /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers.
+ /// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm1x8: clamp(f / 127.0, -1, +1)
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackSnorm2x8(uint16 p)
+ /// @see vec4 unpackSnorm4x8(uint32 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackSnorm1x8(uint8 p);
+
+ /// First, converts each component of the normalized floating-point value v into 8-bit integer values.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x8: round(clamp(c, -1, +1) * 127.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packSnorm1x8(float const & v)
+ /// @see uint32 packSnorm4x8(vec4 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm2x8: clamp(f / 127.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackSnorm1x8(uint8 p)
+ /// @see vec4 unpackSnorm4x8(uint32 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p);
+
+ /// First, converts the normalized floating-point value v into a 16-bit integer value.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm1x16(float const & v)
+ /// @see uint64 packSnorm4x16(vec4 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packUnorm1x16(float v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers.
+ /// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm1x16: f / 65535.0
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackUnorm2x16(uint32 p)
+ /// @see vec4 unpackUnorm4x16(uint64 p)
+ /// @see GLSL unpackUnorm2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackUnorm1x16(uint16 p);
+
+ /// First, converts each component of the normalized floating-point value v into 16-bit integer values.
+ /// Then, the results are packed into the returned 64-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm1x16(float const & v)
+ /// @see uint32 packUnorm2x16(vec2 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v);
+
+ /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnormx4x16: f / 65535.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackUnorm1x16(uint16 p)
+ /// @see vec2 unpackUnorm2x16(uint32 p)
+ /// @see GLSL unpackUnorm2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 const & p);
+
+ /// First, converts the normalized floating-point value v into 16-bit integer value.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion to fixed point is done as follows:
+ /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm2x16(vec2 const & v)
+ /// @see uint64 packSnorm4x16(vec4 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packSnorm1x16(float v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackSnorm2x16(uint32 p)
+ /// @see vec4 unpackSnorm4x16(uint64 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackSnorm1x16(uint16 p);
+
+ /// First, converts each component of the normalized floating-point value v into 16-bit integer values.
+ /// Then, the results are packed into the returned 64-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm1x16(float const & v)
+ /// @see uint32 packSnorm2x16(vec2 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v);
+
+ /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackSnorm1x16(uint16 p)
+ /// @see vec2 unpackSnorm2x16(uint32 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 const & p);
+
+ /// Returns an unsigned integer obtained by converting the components of a floating-point scalar
+ /// to the 16-bit floating-point representation found in the OpenGL Specification,
+ /// and then packing this 16-bit value into a 16-bit unsigned integer.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packHalf2x16(vec2 const & v)
+ /// @see uint64 packHalf4x16(vec4 const & v)
+ /// @see GLSL packHalf2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packHalf1x16(float const & v);
+
+ /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value,
+ /// interpreted as a 16-bit floating-point number according to the OpenGL Specification,
+ /// and converting it to 32-bit floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackHalf2x16(uint32 const & v)
+ /// @see vec4 unpackHalf4x16(uint64 const & v)
+ /// @see GLSL unpackHalf2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackHalf1x16(uint16 const & v);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector
+ /// to the 16-bit floating-point representation found in the OpenGL Specification,
+ /// and then packing these four 16-bit values into a 64-bit unsigned integer.
+ /// The first vector component specifies the 16 least-significant bits of the result;
+ /// the forth component specifies the 16 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packHalf1x16(float const & v)
+ /// @see uint32 packHalf2x16(vec2 const & v)
+ /// @see GLSL packHalf2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v);
+
+ /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values,
+ /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,
+ /// and converting them to 32-bit floating-point values.
+ /// The first component of the vector is obtained from the 16 least-significant bits of v;
+ /// the forth component is obtained from the 16 most-significant bits of v.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackHalf1x16(uint16 const & v)
+ /// @see vec2 unpackHalf2x16(uint32 const & v)
+ /// @see GLSL unpackHalf2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 const & p);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector
+ /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification,
+ /// and then packing these four values into a 32-bit unsigned integer.
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packI3x10_1x2(uvec4 const & v)
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see ivec4 unpackI3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v);
+
+ /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p);
+ GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 const & p);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector
+ /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification,
+ /// and then packing these four values into a 32-bit unsigned integer.
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see ivec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v);
+
+ /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p);
+ GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 const & p);
+
+ /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values.
+ /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0)
+ /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0)
+ ///
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1)
+ /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p))
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p)
+ /// @see uvec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 const & p);
+
+ /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values.
+ /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0)
+ /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0)
+ ///
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1)
+ /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see vec4 unpackInorm3x10_1x2(uint32 const & p))
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p)
+ /// @see uvec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 const & p);
+
+ /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
+ /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The first vector component specifies the 11 least-significant bits of the result;
+ /// the last component specifies the 10 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec3 unpackF2x11_1x10(uint32 const & p)
+ GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
+ /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packF2x11_1x10(vec3 const & v)
+ GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 const & p);
+
+ /// @}
+}// namespace glm
+
+#include "packing.inl"
+
+#endif//GLM_GTC_packing
+
diff --git a/glm/gtc/packing.inl b/glm/gtc/packing.inl
new file mode 100644
index 00000000..d67cad09
--- /dev/null
+++ b/glm/gtc/packing.inl
@@ -0,0 +1,575 @@
+///////////////////////////////////////////////////////////////////////////////////
+/// OpenGL Mathematics (glm.g-truc.net)
+///
+/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
+/// Permission is hereby granted, free of charge, to any person obtaining a copy
+/// of this software and associated documentation files (the "Software"), to deal
+/// in the Software without restriction, including without limitation the rights
+/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+/// copies of the Software, and to permit persons to whom the Software is
+/// furnished to do so, subject to the following conditions:
+///
+/// The above copyright notice and this permission notice shall be included in
+/// all copies or substantial portions of the Software.
+///
+/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+/// THE SOFTWARE.
+///
+/// @ref gtc_packing
+/// @file glm/gtc/packing.inl
+/// @date 2013-08-08 / 2013-08-08
+/// @author Christophe Riccio
+///////////////////////////////////////////////////////////////////////////////////
+
+namespace glm{
+namespace detail
+{
+ glm::uint16 float2half(glm::uint32 const & f)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((f >> 16) & 0x8000) | // sign
+ ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential
+ ((f >> 13) & 0x03ff); // Mantissa
+ }
+
+ glm::uint32 float2packed11(glm::uint32 const & f)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x000007c0 => 00000000 00000000 00000111 11000000
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential
+ ((f >> 17) & 0x003f); // Mantissa
+ }
+
+ glm::uint32 packed11ToFloat(glm::uint32 const & p)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x000007c0 => 00000000 00000000 00000111 11000000
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential
+ ((p & 0x003f) << 17); // Mantissa
+ }
+
+ glm::uint32 float2packed10(glm::uint32 const & f)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x0000001F => 00000000 00000000 00000000 00011111
+ // 0x0000003F => 00000000 00000000 00000000 00111111
+ // 0x000003E0 => 00000000 00000000 00000011 11100000
+ // 0x000007C0 => 00000000 00000000 00000111 11000000
+ // 0x00007C00 => 00000000 00000000 01111100 00000000
+ // 0x000003FF => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential
+ ((f >> 18) & 0x001f); // Mantissa
+ }
+
+ glm::uint32 packed10ToFloat(glm::uint32 const & p)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x0000001F => 00000000 00000000 00000000 00011111
+ // 0x0000003F => 00000000 00000000 00000000 00111111
+ // 0x000003E0 => 00000000 00000000 00000011 11100000
+ // 0x000007C0 => 00000000 00000000 00000111 11000000
+ // 0x00007C00 => 00000000 00000000 01111100 00000000
+ // 0x000003FF => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential
+ ((p & 0x001f) << 18); // Mantissa
+ }
+
+ glm::uint half2float(glm::uint const & h)
+ {
+ return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13);
+ }
+
+ union uif
+ {
+ glm::uint i;
+ float f;
+ };
+
+ glm::uint floatTo11bit(float x)
+ {
+ if(x == 0.0f)
+ return 0;
+ else if(glm::isnan(x))
+ return ~0;
+ else if(glm::isinf(x))
+ return 0x1f << 6;
+
+ uif Union;
+ Union.f = x;
+ return float2packed11(Union.i);
+ }
+
+ float packed11bitToFloat(glm::uint x)
+ {
+ if(x == 0)
+ return 0.0f;
+ else if(x == ((1 << 11) - 1))
+ return ~0;//NaN
+ else if(x == (0x1f << 6))
+ return ~0;//Inf
+
+ uif Union;
+ Union.i = packed11ToFloat(x);
+ return Union.f;
+ }
+
+ glm::uint floatTo10bit(float x)
+ {
+ if(x == 0.0f)
+ return 0;
+ else if(glm::isnan(x))
+ return ~0;
+ else if(glm::isinf(x))
+ return 0x1f << 5;
+
+ uif Union;
+ Union.f = x;
+ return float2packed10(Union.i);
+ }
+
+ float packed10bitToFloat(glm::uint x)
+ {
+ if(x == 0)
+ return 0.0f;
+ else if(x == ((1 << 10) - 1))
+ return ~0;//NaN
+ else if(x == (0x1f << 5))
+ return ~0;//Inf
+
+ uif Union;
+ Union.i = packed10ToFloat(x);
+ return Union.f;
+ }
+
+ glm::uint f11_f11_f10(float x, float y, float z)
+ {
+ return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22);
+ }
+
+ union u10u10u10u2
+ {
+ struct
+ {
+ uint x : 10;
+ uint y : 10;
+ uint z : 10;
+ uint w : 2;
+ } data;
+ uint32 pack;
+ };
+
+ union i10i10i10i2
+ {
+ struct
+ {
+ int x : 10;
+ int y : 10;
+ int z : 10;
+ int w : 2;
+ } data;
+ uint32 pack;
+ };
+
+ union unorm4x16
+ {
+ struct
+ {
+ uint16 x;
+ uint16 y;
+ uint16 z;
+ uint16 w;
+ } data;
+ uint64 pack;
+ };
+
+ union snorm4x16
+ {
+ struct
+ {
+ int16 x;
+ int16 y;
+ int16 z;
+ int16 w;
+ } data;
+ uint64 pack;
+ };
+
+ union snorm1x16
+ {
+ int16 data;
+ uint16 pack;
+ };
+
+ union half1x16
+ {
+ hdata data;
+ uint16 pack;
+ };
+
+ union half4x16
+ {
+ struct
+ {
+ hdata x;
+ hdata y;
+ hdata z;
+ hdata w;
+ } data;
+ uint64 pack;
+ };
+
+ union unorm1x8
+ {
+ uint8 data;
+ uint8 pack;
+ };
+
+ union unorm2x8
+ {
+ struct
+ {
+ uint8 x;
+ uint8 y;
+ } data;
+ uint16 pack;
+ };
+
+ union snorm1x8
+ {
+ int8 data;
+ uint8 pack;
+ };
+
+ union snorm2x8
+ {
+ struct
+ {
+ int8 x;
+ int8 y;
+ } data;
+ uint16 pack;
+ };
+}//namespace detail
+
+ GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float const & v)
+ {
+ int8 Scaled(round(clamp(v ,-1.0f, 1.0f) * 255.0f));
+ detail::unorm1x8 Packing;
+ Packing.data = Scaled;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p)
+ {
+ detail::unorm1x8 Packing;
+ Packing.pack = p;
+ float Unpacked(Packing.data);
+ return Unpacked * float(0.0039215686274509803921568627451);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v)
+ {
+ i8vec2 Scaled(round(clamp(v ,-1.0f, 1.0f) * 255.0f));
+ detail::unorm2x8 Packing;
+ Packing.data.x = Scaled.x;
+ Packing.data.y = Scaled.y;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p)
+ {
+ detail::unorm2x8 Packing;
+ Packing.pack = p;
+ vec2 Unpacked(Packing.data.x, Packing.data.y);
+ return Unpacked * float(0.0039215686274509803921568627451);
+ }
+
+ GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float const & v)
+ {
+ glm::int8 Scaled(round(clamp(v ,-1.0f, 1.0f) * 127.0f));
+ detail::snorm1x8 Packing;
+ Packing.data = Scaled;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p)
+ {
+ detail::snorm1x8 Packing;
+ Packing.pack = p;
+ float Unpacked(Packing.data);
+ return clamp(Unpacked * float(0.00787401574803149606299212598425), -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v)
+ {
+ glm::i8vec2 Scaled(round(clamp(v ,-1.0f, 1.0f) * 127.0f));
+ detail::snorm2x8 Packing;
+ Packing.data.x = Scaled.x;
+ Packing.data.y = Scaled.y;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p)
+ {
+ detail::snorm2x8 Packing;
+ Packing.pack = p;
+ vec2 Unpacked(Packing.data.x, Packing.data.y);
+ return clamp(Unpacked * float(0.00787401574803149606299212598425), -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s)
+ {
+ return uint16(round(clamp(s, 0.0f, 1.0f) * 65535.0f));
+ }
+
+ GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p)
+ {
+ return float(p) * 1.0f / 65535.0f;
+ }
+
+ GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v)
+ {
+ i16vec4 Scaled(round(clamp(v, 0.0f, 1.0f) * 65535.0f));
+ detail::unorm4x16 Packing;
+ Packing.data.x = Scaled[0];
+ Packing.data.y = Scaled[1];
+ Packing.data.z = Scaled[2];
+ Packing.data.w = Scaled[3];
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 const & p)
+ {
+ detail::unorm4x16 Packing;
+ vec4 Result(
+ float(Packing.data.x),
+ float(Packing.data.y),
+ float(Packing.data.z),
+ float(Packing.data.w));
+ Result *= float(1.5259021896696421759365224689097e-5); // 1.0 / 65535.0
+ return Result;
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v)
+ {
+ float Scaled = clamp(v ,-1.0f, 1.0f) * 32767.0f;
+ detail::snorm1x16 Packing;
+ Packing.data = detail::int16(Scaled);
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p)
+ {
+ detail::snorm1x16 Packing;
+ Packing.pack = p;
+ return clamp(float(Packing.data) * float(3.0518509475997192297128208258309e-5), -1.0f, 1.0f); //1.0f / 32767.0f
+ }
+
+ GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v)
+ {
+ i16vec4 Scaled(clamp(v ,-1.0f, 1.0f) * 32767.0f);
+ detail::snorm4x16 Packing;
+ Packing.data.x = Scaled.x;
+ Packing.data.y = Scaled.y;
+ Packing.data.z = Scaled.z;
+ Packing.data.w = Scaled.w;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 const & p)
+ {
+ detail::snorm4x16 Packing;
+ Packing.pack = p;
+ vec4 Unpacked(Packing.data.x, Packing.data.y, Packing.data.z, Packing.data.w);
+ return clamp(Unpacked * float(3.0518509475997192297128208258309e-5), -1.0f, 1.0f); //1.0f / 32767.0f
+ }
+
+ GLM_FUNC_DECL uint16 packHalf1x16(float const & v)
+ {
+ detail::half1x16 Packing;
+ Packing.data = detail::toFloat16(v);
+ return Packing.pack;
+ }
+
+ GLM_FUNC_DECL float unpackHalf1x16(uint16 const & v)
+ {
+ detail::half1x16 Packing;
+ Packing.pack = v;
+ return detail::toFloat32(Packing.data);
+ }
+
+ GLM_FUNC_DECL uint64 packHalf4x16(glm::vec4 const & v)
+ {
+ detail::half4x16 Packing;
+ Packing.data.x = detail::toFloat16(v.x);
+ Packing.data.y = detail::toFloat16(v.y);
+ Packing.data.z = detail::toFloat16(v.z);
+ Packing.data.w = detail::toFloat16(v.w);
+ return Packing.pack;
+ }
+
+ GLM_FUNC_DECL glm::vec4 unpackHalf4x16(uint64 const & v)
+ {
+ detail::half4x16 Packing;
+ Packing.pack = v;
+ return glm::vec4(
+ detail::toFloat32(Packing.data.x),
+ detail::toFloat32(Packing.data.y),
+ detail::toFloat32(Packing.data.z),
+ detail::toFloat32(Packing.data.w));
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v)
+ {
+ detail::i10i10i10i2 Result;
+ Result.data.x = v.x;
+ Result.data.y = v.y;
+ Result.data.z = v.z;
+ Result.data.w = v.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 const & v)
+ {
+ detail::i10i10i10i2 Unpack;
+ Unpack.pack = v;
+ return ivec4(
+ Unpack.data.x,
+ Unpack.data.y,
+ Unpack.data.z,
+ Unpack.data.w);
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v)
+ {
+ detail::u10u10u10u2 Result;
+ Result.data.x = v.x;
+ Result.data.y = v.y;
+ Result.data.z = v.z;
+ Result.data.w = v.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 const & v)
+ {
+ detail::u10u10u10u2 Unpack;
+ Unpack.pack = v;
+ return uvec4(
+ Unpack.data.x,
+ Unpack.data.y,
+ Unpack.data.z,
+ Unpack.data.w);
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v)
+ {
+ detail::i10i10i10i2 Result;
+ Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f));
+ Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f));
+ Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f));
+ Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f));
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 const & v)
+ {
+ detail::i10i10i10i2 Unpack;
+ Unpack.pack = v;
+ vec4 Result;
+ Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f);
+ Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f);
+ Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f);
+ Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f);
+ return Result;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v)
+ {
+ detail::i10i10i10i2 Result;
+ Result.data.x = int(round(clamp(v.x, 0.0f, 1.0f) * 1023.f));
+ Result.data.y = int(round(clamp(v.y, 0.0f, 1.0f) * 1023.f));
+ Result.data.z = int(round(clamp(v.z, 0.0f, 1.0f) * 1023.f));
+ Result.data.w = int(round(clamp(v.w, 0.0f, 1.0f) * 3.f));
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 const & v)
+ {
+ detail::i10i10i10i2 Unpack;
+ Unpack.pack = v;
+ vec4 Result;
+ Result.x = float(Unpack.data.x) / 1023.f;
+ Result.y = float(Unpack.data.y) / 1023.f;
+ Result.z = float(Unpack.data.z) / 1023.f;
+ Result.w = float(Unpack.data.w) / 3.f;
+ return Result;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v)
+ {
+ return
+ ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) |
+ ((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) |
+ ((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22);
+ }
+
+ GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 const & v)
+ {
+ return vec3(
+ detail::packed11bitToFloat(v >> 0),
+ detail::packed11bitToFloat(v >> 11),
+ detail::packed10bitToFloat(v >> 22));
+ }
+
+}//namespace glm
diff --git a/glm/gtc/type_ptr.inl b/glm/gtc/type_ptr.inl
index df4890ec..af78330b 100644
--- a/glm/gtc/type_ptr.inl
+++ b/glm/gtc/type_ptr.inl
@@ -262,7 +262,7 @@ namespace glm
return &(mat[0].x);
}
- //! Return the address to the data of the matrix input.
+ //! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template
GLM_FUNC_QUALIFIER T * value_ptr
@@ -291,7 +291,7 @@ namespace glm
{
return &(mat[0].x);
}
-
+
//! Return the constant address to the data of the input parameter.
/// @see gtc_type_ptr
template
@@ -302,14 +302,14 @@ namespace glm
{
return &(q[0]);
}
-
+
//! Return the address to the data of the quaternion input.
/// @see gtc_type_ptr
template
GLM_FUNC_QUALIFIER T * value_ptr
(
- detail::tquat & q
- )
+ detail::tquat & q
+ )
{
return &(q[0]);
}
diff --git a/test/core/core_type_vec2.cpp b/test/core/core_type_vec2.cpp
index 6f2b2560..ebdf2306 100644
--- a/test/core/core_type_vec2.cpp
+++ b/test/core/core_type_vec2.cpp
@@ -230,7 +230,7 @@ int test_operator_increment()
glm::ivec2 v3 = ++v1;
glm::ivec2 v4 = v2++;
- Error += glm::all(glm::equal(v0, v4)) ? 0 : 1;
+ Error += glm::all(glm::equal(v0, v4)) ? 0 : 1;
Error += glm::all(glm::equal(v1, v2)) ? 0 : 1;
Error += glm::all(glm::equal(v1, v3)) ? 0 : 1;
diff --git a/test/gtc/CMakeLists.txt b/test/gtc/CMakeLists.txt
index 273341a8..62c33063 100644
--- a/test/gtc/CMakeLists.txt
+++ b/test/gtc/CMakeLists.txt
@@ -6,6 +6,7 @@ glmCreateTestGTC(gtc_matrix_integer)
glmCreateTestGTC(gtc_matrix_inverse)
glmCreateTestGTC(gtc_matrix_transform)
glmCreateTestGTC(gtc_noise)
+glmCreateTestGTC(gtc_packing)
glmCreateTestGTC(gtc_quaternion)
glmCreateTestGTC(gtc_random)
glmCreateTestGTC(gtc_reciprocal)
diff --git a/test/gtc/gtc_half_float.cpp b/test/gtc/gtc_half_float.cpp
index f054f599..41266142 100644
--- a/test/gtc/gtc_half_float.cpp
+++ b/test/gtc/gtc_half_float.cpp
@@ -791,27 +791,27 @@ int test_half()
{
int Error = 0;
- print_value(0.0);
- print_value(0.1);
- print_value(0.2);
- print_value(0.3);
- print_value(0.4);
- print_value(0.5);
- print_value(0.6);
- print_value(1.0);
- print_value(1.1);
- print_value(1.2);
- print_value(1.3);
- print_value(1.4);
- print_value(1.5);
- print_value(1.6);
- print_value(2.0);
- print_value(2.1);
- print_value(2.2);
- print_value(2.3);
- print_value(2.4);
- print_value(2.5);
- print_value(2.6);
+ print_value(0.0f);
+ print_value(0.1f);
+ print_value(0.2f);
+ print_value(0.3f);
+ print_value(0.4f);
+ print_value(0.5f);
+ print_value(0.6f);
+ print_value(1.0f);
+ print_value(1.1f);
+ print_value(1.2f);
+ print_value(1.3f);
+ print_value(1.4f);
+ print_value(1.5f);
+ print_value(1.6f);
+ print_value(2.0f);
+ print_value(2.1f);
+ print_value(2.2f);
+ print_value(2.3f);
+ print_value(2.4f);
+ print_value(2.5f);
+ print_value(2.6f);
return Error;
}
diff --git a/test/gtc/gtc_packing.cpp b/test/gtc/gtc_packing.cpp
new file mode 100644
index 00000000..b3d83739
--- /dev/null
+++ b/test/gtc/gtc_packing.cpp
@@ -0,0 +1,317 @@
+///////////////////////////////////////////////////////////////////////////////////
+/// OpenGL Mathematics (glm.g-truc.net)
+///
+/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
+/// Permission is hereby granted, free of charge, to any person obtaining a copy
+/// of this software and associated documentation files (the "Software"), to deal
+/// in the Software without restriction, including without limitation the rights
+/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+/// copies of the Software, and to permit persons to whom the Software is
+/// furnished to do so, subject to the following conditions:
+///
+/// The above copyright notice and this permission notice shall be included in
+/// all copies or substantial portions of the Software.
+///
+/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+/// THE SOFTWARE.
+///
+/// @ref test
+/// @file test/gtc/packing.cpp
+/// @date 2013-08-09 / 2013-08-09
+/// @author Christophe Riccio
+///////////////////////////////////////////////////////////////////////////////////
+
+#include
+#include
+#include
+#include
+
+void print_bits(glm::half const & s)
+{
+ union
+ {
+ glm::detail::hdata h;
+ unsigned short i;
+ } uif;
+
+ uif.h = s._data();
+
+ printf("f16: ");
+ for(std::size_t j = sizeof(s) * 8; j > 0; --j)
+ {
+ if(j == 10 || j == 15)
+ printf(" ");
+ printf("%d", (uif.i & (1 << (j - 1))) ? 1 : 0);
+ }
+}
+
+void print_bits(float const & s)
+{
+ union
+ {
+ float f;
+ unsigned int i;
+ } uif;
+
+ uif.f = s;
+
+ printf("f32: ");
+ for(std::size_t j = sizeof(s) * 8; j > 0; --j)
+ {
+ if(j == 23 || j == 31)
+ printf(" ");
+ printf("%d", (uif.i & (1 << (j - 1))) ? 1 : 0);
+ }
+}
+
+void print_10bits(glm::uint const & s)
+{
+ printf("10b: ");
+ for(std::size_t j = 10; j > 0; --j)
+ {
+ if(j == 5)
+ printf(" ");
+ printf("%d", (s & (1 << (j - 1))) ? 1 : 0);
+ }
+}
+
+void print_11bits(glm::uint const & s)
+{
+ printf("11b: ");
+ for(std::size_t j = 11; j > 0; --j)
+ {
+ if(j == 6)
+ printf(" ");
+ printf("%d", (s & (1 << (j - 1))) ? 1 : 0);
+ }
+}
+
+void print_value(float const & s)
+{
+ printf("%2.5f, ", s);
+ print_bits(s);
+ printf(", ");
+ print_bits(glm::half(s));
+// printf(", ");
+// print_11bits(detail::floatTo11bit(s));
+// printf(", ");
+// print_10bits(detail::floatTo10bit(s));
+ printf("\n");
+}
+
+int test_half()
+{
+ int Error = 0;
+
+ print_value(0.0f);
+ print_value(0.1f);
+ print_value(0.2f);
+ print_value(0.3f);
+ print_value(0.4f);
+ print_value(0.5f);
+ print_value(0.6f);
+ print_value(1.0f);
+ print_value(1.1f);
+ print_value(1.2f);
+ print_value(1.3f);
+ print_value(1.4f);
+ print_value(1.5f);
+ print_value(1.6f);
+ print_value(2.0f);
+ print_value(2.1f);
+ print_value(2.2f);
+ print_value(2.3f);
+ print_value(2.4f);
+ print_value(2.5f);
+ print_value(2.6f);
+
+ return Error;
+}
+
+int test_Half1x16()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(0.0f);
+ Tests.push_back(1.0f);
+ Tests.push_back(-1.0f);
+ Tests.push_back(2.0f);
+ Tests.push_back(-2.0f);
+ Tests.push_back(1.9f);
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packHalf1x16(Tests[i]);
+ float v0 = glm::unpackHalf1x16(p0);
+ glm::uint32 p1 = glm::packHalf1x16(v0);
+ float v1 = glm::unpackHalf1x16(p0);
+ Error += (v0 == v1) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_Half4x16()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec4(1.0));
+ Tests.push_back(glm::vec4(0.0));
+ Tests.push_back(glm::vec4(2.0));
+ Tests.push_back(glm::vec4(0.1));
+ Tests.push_back(glm::vec4(0.5));
+ Tests.push_back(glm::vec4(-0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint64 p0 = glm::packHalf4x16(Tests[i]);
+ glm::vec4 v0 = glm::unpackHalf4x16(p0);
+ glm::uint64 p1 = glm::packHalf4x16(v0);
+ glm::vec4 v1 = glm::unpackHalf4x16(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_I3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::ivec4(0));
+ Tests.push_back(glm::ivec4(1));
+ Tests.push_back(glm::ivec4(-1));
+ Tests.push_back(glm::ivec4(2));
+ Tests.push_back(glm::ivec4(-2));
+ Tests.push_back(glm::ivec4(3));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packI3x10_1x2(Tests[i]);
+ glm::ivec4 v0 = glm::unpackI3x10_1x2(p0);
+ glm::uint32 p1 = glm::packI3x10_1x2(v0);
+ glm::ivec4 v1 = glm::unpackI3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_U3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::uvec4(0));
+ Tests.push_back(glm::uvec4(1));
+ Tests.push_back(glm::uvec4(2));
+ Tests.push_back(glm::uvec4(3));
+ Tests.push_back(glm::uvec4(4));
+ Tests.push_back(glm::uvec4(5));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packU3x10_1x2(Tests[i]);
+ glm::uvec4 v0 = glm::unpackU3x10_1x2(p0);
+ glm::uint32 p1 = glm::packU3x10_1x2(v0);
+ glm::uvec4 v1 = glm::unpackU3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_Snorm3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec4(1.0));
+ Tests.push_back(glm::vec4(0.0));
+ Tests.push_back(glm::vec4(2.0));
+ Tests.push_back(glm::vec4(0.1));
+ Tests.push_back(glm::vec4(0.5));
+ Tests.push_back(glm::vec4(0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packSnorm3x10_1x2(Tests[i]);
+ glm::vec4 v0 = glm::unpackSnorm3x10_1x2(p0);
+ glm::uint32 p1 = glm::packSnorm3x10_1x2(v0);
+ glm::vec4 v1 = glm::unpackSnorm3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_Unorm3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec4(1.0));
+ Tests.push_back(glm::vec4(0.0));
+ Tests.push_back(glm::vec4(2.0));
+ Tests.push_back(glm::vec4(0.1));
+ Tests.push_back(glm::vec4(0.5));
+ Tests.push_back(glm::vec4(0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packSnorm3x10_1x2(Tests[i]);
+ glm::vec4 v0 = glm::unpackSnorm3x10_1x2(p0);
+ glm::uint32 p1 = glm::packSnorm3x10_1x2(v0);
+ glm::vec4 v1 = glm::unpackSnorm3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_F2x11_1x10()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec3(1.0));
+ Tests.push_back(glm::vec3(0.0));
+ Tests.push_back(glm::vec3(2.0));
+ Tests.push_back(glm::vec3(0.1));
+ Tests.push_back(glm::vec3(0.5));
+ Tests.push_back(glm::vec3(0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packF2x11_1x10(Tests[i]);
+ glm::vec3 v0 = glm::unpackF2x11_1x10(p0);
+ glm::uint32 p1 = glm::packF2x11_1x10(v0);
+ glm::vec3 v1 = glm::unpackF2x11_1x10(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int main()
+{
+ int Error(0);
+
+ Error += test_F2x11_1x10();
+ Error += test_Snorm3x10_1x2();
+ Error += test_Unorm3x10_1x2();
+ Error += test_I3x10_1x2();
+ Error += test_U3x10_1x2();
+ Error += test_Half1x16();
+ Error += test_U3x10_1x2();
+
+ return Error;
+}