|
|
|
@ -1,13 +1,8 @@ |
|
|
|
|
#ifndef LINMATH_H |
|
|
|
|
#define LINMATH_H |
|
|
|
|
|
|
|
|
|
#include <string.h> |
|
|
|
|
#include <math.h> |
|
|
|
|
|
|
|
|
|
/* 2020-03-02 Camilla Löwy <elmindreda@elmindreda.org>
|
|
|
|
|
* - Added inclusion of string.h for memcpy |
|
|
|
|
* - Replaced tan and acos with tanf and acosf |
|
|
|
|
* - Replaced double constants with float equivalents |
|
|
|
|
*/ |
|
|
|
|
#include <string.h> |
|
|
|
|
|
|
|
|
|
#ifdef LINMATH_NO_INLINE |
|
|
|
@ -38,7 +33,7 @@ LINMATH_H_FUNC void vec##n##_scale(vec##n r, vec##n const v, float const s) \ |
|
|
|
|
} \
|
|
|
|
|
LINMATH_H_FUNC float vec##n##_mul_inner(vec##n const a, vec##n const b) \
|
|
|
|
|
{ \
|
|
|
|
|
float p = 0.; \
|
|
|
|
|
float p = 0.f; \
|
|
|
|
|
int i; \
|
|
|
|
|
for(i=0; i<n; ++i) \
|
|
|
|
|
p += b[i]*a[i]; \
|
|
|
|
@ -64,6 +59,12 @@ LINMATH_H_FUNC void vec##n##_max(vec##n r, vec##n const a, vec##n const b) \ |
|
|
|
|
int i; \
|
|
|
|
|
for(i=0; i<n; ++i) \
|
|
|
|
|
r[i] = a[i]>b[i] ? a[i] : b[i]; \
|
|
|
|
|
} \
|
|
|
|
|
LINMATH_H_FUNC void vec##n##_dup(vec##n r, vec##n const src) \
|
|
|
|
|
{ \
|
|
|
|
|
int i; \
|
|
|
|
|
for(i=0; i<n; ++i) \
|
|
|
|
|
r[i] = src[i]; \
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
LINMATH_H_DEFINE_VEC(2) |
|
|
|
@ -79,13 +80,13 @@ LINMATH_H_FUNC void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) |
|
|
|
|
|
|
|
|
|
LINMATH_H_FUNC void vec3_reflect(vec3 r, vec3 const v, vec3 const n) |
|
|
|
|
{ |
|
|
|
|
float p = 2.f*vec3_mul_inner(v, n); |
|
|
|
|
float p = 2.f * vec3_mul_inner(v, n); |
|
|
|
|
int i; |
|
|
|
|
for(i=0;i<3;++i) |
|
|
|
|
r[i] = v[i] - p*n[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 a, vec4 b) |
|
|
|
|
LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 const a, vec4 const b) |
|
|
|
|
{ |
|
|
|
|
r[0] = a[1]*b[2] - a[2]*b[1]; |
|
|
|
|
r[1] = a[2]*b[0] - a[0]*b[2]; |
|
|
|
@ -93,7 +94,7 @@ LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 a, vec4 b) |
|
|
|
|
r[3] = 1.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
LINMATH_H_FUNC void vec4_reflect(vec4 r, vec4 v, vec4 n) |
|
|
|
|
LINMATH_H_FUNC void vec4_reflect(vec4 r, vec4 const v, vec4 const n) |
|
|
|
|
{ |
|
|
|
|
float p = 2.f*vec4_mul_inner(v, n); |
|
|
|
|
int i; |
|
|
|
@ -109,61 +110,59 @@ LINMATH_H_FUNC void mat4x4_identity(mat4x4 M) |
|
|
|
|
for(j=0; j<4; ++j) |
|
|
|
|
M[i][j] = i==j ? 1.f : 0.f; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_dup(mat4x4 M, mat4x4 N) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_dup(mat4x4 M, mat4x4 const N) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
for(j=0; j<4; ++j) |
|
|
|
|
M[i][j] = N[i][j]; |
|
|
|
|
vec4_dup(M[i], N[i]); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_row(vec4 r, mat4x4 M, int i) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_row(vec4 r, mat4x4 const M, int i) |
|
|
|
|
{ |
|
|
|
|
int k; |
|
|
|
|
for(k=0; k<4; ++k) |
|
|
|
|
r[k] = M[k][i]; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_col(vec4 r, mat4x4 M, int i) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_col(vec4 r, mat4x4 const M, int i) |
|
|
|
|
{ |
|
|
|
|
int k; |
|
|
|
|
for(k=0; k<4; ++k) |
|
|
|
|
r[k] = M[i][k]; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_transpose(mat4x4 M, mat4x4 N) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_transpose(mat4x4 M, mat4x4 const N) |
|
|
|
|
{ |
|
|
|
|
// Note: if M and N are the same, the user has to
|
|
|
|
|
// explicitly make a copy of M and set it to N.
|
|
|
|
|
int i, j; |
|
|
|
|
for(j=0; j<4; ++j) |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
M[i][j] = N[j][i]; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_add(mat4x4 M, mat4x4 const a, mat4x4 const b) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
vec4_add(M[i], a[i], b[i]); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_sub(mat4x4 M, mat4x4 const a, mat4x4 const b) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
vec4_sub(M[i], a[i], b[i]); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_scale(mat4x4 M, mat4x4 a, float k) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_scale(mat4x4 M, mat4x4 const a, float k) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
vec4_scale(M[i], a[i], k); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_scale_aniso(mat4x4 M, mat4x4 const a, float x, float y, float z) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
vec4_scale(M[0], a[0], x); |
|
|
|
|
vec4_scale(M[1], a[1], y); |
|
|
|
|
vec4_scale(M[2], a[2], z); |
|
|
|
|
for(i = 0; i < 4; ++i) { |
|
|
|
|
M[3][i] = a[3][i]; |
|
|
|
|
} |
|
|
|
|
vec4_dup(M[3], a[3]); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 const a, mat4x4 const b) |
|
|
|
|
{ |
|
|
|
|
mat4x4 temp; |
|
|
|
|
int k, r, c; |
|
|
|
@ -174,7 +173,7 @@ LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) |
|
|
|
|
} |
|
|
|
|
mat4x4_dup(M, temp); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_mul_vec4(vec4 r, mat4x4 const M, vec4 const v) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
for(j=0; j<4; ++j) { |
|
|
|
@ -200,13 +199,13 @@ LINMATH_H_FUNC void mat4x4_translate_in_place(mat4x4 M, float x, float y, float |
|
|
|
|
M[3][i] += vec4_mul_inner(r, t); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 const a, vec3 const b) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
for(i=0; i<4; ++i) for(j=0; j<4; ++j) |
|
|
|
|
M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 const M, float x, float y, float z, float angle) |
|
|
|
|
{ |
|
|
|
|
float s = sinf(angle); |
|
|
|
|
float c = cosf(angle); |
|
|
|
@ -234,13 +233,13 @@ LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, |
|
|
|
|
mat4x4_add(T, T, C); |
|
|
|
|
mat4x4_add(T, T, S); |
|
|
|
|
|
|
|
|
|
T[3][3] = 1.;
|
|
|
|
|
T[3][3] = 1.f; |
|
|
|
|
mat4x4_mul(R, M, T); |
|
|
|
|
} else { |
|
|
|
|
mat4x4_dup(R, M); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 const M, float angle) |
|
|
|
|
{ |
|
|
|
|
float s = sinf(angle); |
|
|
|
|
float c = cosf(angle); |
|
|
|
@ -252,7 +251,7 @@ LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
}; |
|
|
|
|
mat4x4_mul(Q, M, R); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 const M, float angle) |
|
|
|
|
{ |
|
|
|
|
float s = sinf(angle); |
|
|
|
|
float c = cosf(angle); |
|
|
|
@ -264,7 +263,7 @@ LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
}; |
|
|
|
|
mat4x4_mul(Q, M, R); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 const M, float angle) |
|
|
|
|
{ |
|
|
|
|
float s = sinf(angle); |
|
|
|
|
float c = cosf(angle); |
|
|
|
@ -276,7 +275,7 @@ LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
}; |
|
|
|
|
mat4x4_mul(Q, M, R); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 M) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 const M) |
|
|
|
|
{ |
|
|
|
|
float s[6]; |
|
|
|
|
float c[6]; |
|
|
|
@ -317,10 +316,10 @@ LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 M) |
|
|
|
|
T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; |
|
|
|
|
T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_orthonormalize(mat4x4 R, mat4x4 const M) |
|
|
|
|
{ |
|
|
|
|
mat4x4_dup(R, M); |
|
|
|
|
float s = 1.; |
|
|
|
|
float s = 1.f; |
|
|
|
|
vec3 h; |
|
|
|
|
|
|
|
|
|
vec3_norm(R[2], R[2]); |
|
|
|
@ -398,7 +397,7 @@ LINMATH_H_FUNC void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, floa |
|
|
|
|
m[3][2] = -((2.f * f * n) / (f - n)); |
|
|
|
|
m[3][3] = 0.f; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 const eye, vec3 const center, vec3 const up) |
|
|
|
|
{ |
|
|
|
|
/* Adapted from Android's OpenGL Matrix.java. */ |
|
|
|
|
/* See the OpenGL GLUT documentation for gluLookAt for a description */ |
|
|
|
@ -441,24 +440,18 @@ LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef float quat[4]; |
|
|
|
|
#define quat_add vec4_add |
|
|
|
|
#define quat_sub vec4_sub |
|
|
|
|
#define quat_norm vec4_norm |
|
|
|
|
#define quat_scale vec4_scale |
|
|
|
|
#define quat_mul_inner vec4_mul_inner |
|
|
|
|
|
|
|
|
|
LINMATH_H_FUNC void quat_identity(quat q) |
|
|
|
|
{ |
|
|
|
|
q[0] = q[1] = q[2] = 0.f; |
|
|
|
|
q[3] = 1.f; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_add(quat r, quat a, quat b) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
r[i] = a[i] + b[i]; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_sub(quat r, quat a, quat b) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
r[i] = a[i] - b[i]; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_mul(quat r, quat p, quat q) |
|
|
|
|
LINMATH_H_FUNC void quat_mul(quat r, quat const p, quat const q) |
|
|
|
|
{ |
|
|
|
|
vec3 w; |
|
|
|
|
vec3_mul_cross(r, p, q); |
|
|
|
@ -468,37 +461,22 @@ LINMATH_H_FUNC void quat_mul(quat r, quat p, quat q) |
|
|
|
|
vec3_add(r, r, w); |
|
|
|
|
r[3] = p[3]*q[3] - vec3_mul_inner(p, q); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_scale(quat r, quat v, float s) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
r[i] = v[i] * s; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC float quat_inner_product(quat a, quat b) |
|
|
|
|
{ |
|
|
|
|
float p = 0.f; |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<4; ++i) |
|
|
|
|
p += b[i]*a[i]; |
|
|
|
|
return p; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_conj(quat r, quat q) |
|
|
|
|
LINMATH_H_FUNC void quat_conj(quat r, quat const q) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<3; ++i) |
|
|
|
|
r[i] = -q[i]; |
|
|
|
|
r[3] = q[3]; |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_rotate(quat r, float angle, vec3 axis) { |
|
|
|
|
vec3 v; |
|
|
|
|
vec3_scale(v, axis, sinf(angle / 2)); |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<3; ++i) |
|
|
|
|
r[i] = v[i]; |
|
|
|
|
r[3] = cosf(angle / 2); |
|
|
|
|
LINMATH_H_FUNC void quat_rotate(quat r, float angle, vec3 const axis) { |
|
|
|
|
vec3 axis_norm; |
|
|
|
|
vec3_norm(axis_norm, axis); |
|
|
|
|
float s = sinf(angle / 2); |
|
|
|
|
float c = cosf(angle / 2); |
|
|
|
|
vec3_scale(r, axis_norm, s); |
|
|
|
|
r[3] = c; |
|
|
|
|
} |
|
|
|
|
#define quat_norm vec4_norm |
|
|
|
|
LINMATH_H_FUNC void quat_mul_vec3(vec3 r, quat q, vec3 v) |
|
|
|
|
LINMATH_H_FUNC void quat_mul_vec3(vec3 r, quat const q, vec3 const v) |
|
|
|
|
{ |
|
|
|
|
/*
|
|
|
|
|
* Method by Fabian 'ryg' Giessen (of Farbrausch) |
|
|
|
@ -518,7 +496,7 @@ v' = v + q.w * t + cross(q.xyz, t) |
|
|
|
|
vec3_add(r, v, t); |
|
|
|
|
vec3_add(r, r, u); |
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat q) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat const q) |
|
|
|
|
{ |
|
|
|
|
float a = q[3]; |
|
|
|
|
float b = q[0]; |
|
|
|
@ -548,18 +526,21 @@ LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat q) |
|
|
|
|
M[3][3] = 1.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
LINMATH_H_FUNC void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) |
|
|
|
|
LINMATH_H_FUNC void mat4x4o_mul_quat(mat4x4 R, mat4x4 const M, quat const q) |
|
|
|
|
{ |
|
|
|
|
/* XXX: The way this is written only works for othogonal matrices. */ |
|
|
|
|
/* XXX: The way this is written only works for orthogonal matrices. */ |
|
|
|
|
/* TODO: Take care of non-orthogonal case. */ |
|
|
|
|
quat_mul_vec3(R[0], q, M[0]); |
|
|
|
|
quat_mul_vec3(R[1], q, M[1]); |
|
|
|
|
quat_mul_vec3(R[2], q, M[2]); |
|
|
|
|
|
|
|
|
|
R[3][0] = R[3][1] = R[3][2] = 0.f; |
|
|
|
|
R[3][3] = 1.f; |
|
|
|
|
R[0][3] = M[0][3]; |
|
|
|
|
R[1][3] = M[1][3]; |
|
|
|
|
R[2][3] = M[2][3]; |
|
|
|
|
R[3][3] = M[3][3]; // typically 1.0, but here we make it general
|
|
|
|
|
} |
|
|
|
|
LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 M) |
|
|
|
|
LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 const M) |
|
|
|
|
{ |
|
|
|
|
float r=0.f; |
|
|
|
|
int i; |
|
|
|
@ -589,7 +570,7 @@ LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 M) |
|
|
|
|
q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 M, vec2 _a, vec2 _b, float s) |
|
|
|
|
LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 const M, vec2 const _a, vec2 const _b, float s) |
|
|
|
|
{ |
|
|
|
|
vec2 a; memcpy(a, _a, sizeof(a)); |
|
|
|
|
vec2 b; memcpy(b, _b, sizeof(b)); |
|
|
|
@ -597,14 +578,14 @@ LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 M, vec2 _a, vec2 _b, float s |
|
|
|
|
float z_a = 0.; |
|
|
|
|
float z_b = 0.; |
|
|
|
|
|
|
|
|
|
if(vec2_len(a) < 1.f) { |
|
|
|
|
z_a = sqrtf(1.f - vec2_mul_inner(a, a)); |
|
|
|
|
if(vec2_len(a) < 1.) { |
|
|
|
|
z_a = sqrtf(1. - vec2_mul_inner(a, a)); |
|
|
|
|
} else { |
|
|
|
|
vec2_norm(a, a); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(vec2_len(b) < 1.f) { |
|
|
|
|
z_b = sqrtf(1.f - vec2_mul_inner(b, b)); |
|
|
|
|
if(vec2_len(b) < 1.) { |
|
|
|
|
z_b = sqrtf(1. - vec2_mul_inner(b, b)); |
|
|
|
|
} else { |
|
|
|
|
vec2_norm(b, b); |
|
|
|
|
} |
|
|
|
@ -615,7 +596,7 @@ LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 M, vec2 _a, vec2 _b, float s |
|
|
|
|
vec3 c_; |
|
|
|
|
vec3_mul_cross(c_, a_, b_); |
|
|
|
|
|
|
|
|
|
float const angle = acosf(vec3_mul_inner(a_, b_)) * s; |
|
|
|
|
float const angle = acos(vec3_mul_inner(a_, b_)) * s; |
|
|
|
|
mat4x4_rotate(R, M, c_[0], c_[1], c_[2], angle); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|