|
|
|
@ -192,19 +192,20 @@ static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, |
|
|
|
|
vec3 u = {x, y, z}; |
|
|
|
|
|
|
|
|
|
if(vec3_len(u) > 1e-4) { |
|
|
|
|
vec3_norm(u, u); |
|
|
|
|
mat4x4 T; |
|
|
|
|
mat4x4_from_vec3_mul_outer(T, u, u); |
|
|
|
|
|
|
|
|
|
mat4x4 C; |
|
|
|
|
mat4x4 S = { |
|
|
|
|
{ 0, u[2], -u[1], 0}, |
|
|
|
|
{-u[2], 0, u[0], 0}, |
|
|
|
|
{ u[1], -u[0], 0, 0}, |
|
|
|
|
{ 0, 0, 0, 0} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
vec3_norm(u, u); |
|
|
|
|
mat4x4_from_vec3_mul_outer(T, u, u); |
|
|
|
|
|
|
|
|
|
mat4x4_scale(S, S, s); |
|
|
|
|
|
|
|
|
|
mat4x4 C; |
|
|
|
|
mat4x4_identity(C); |
|
|
|
|
mat4x4_sub(C, C, T); |
|
|
|
|
|
|
|
|
@ -257,6 +258,7 @@ static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) |
|
|
|
|
} |
|
|
|
|
static inline void mat4x4_invert(mat4x4 T, mat4x4 M) |
|
|
|
|
{ |
|
|
|
|
float idet; |
|
|
|
|
float s[6]; |
|
|
|
|
float c[6]; |
|
|
|
|
s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; |
|
|
|
@ -274,7 +276,7 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M) |
|
|
|
|
c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; |
|
|
|
|
|
|
|
|
|
/* Assumes it is invertible */ |
|
|
|
|
float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); |
|
|
|
|
idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); |
|
|
|
|
|
|
|
|
|
T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; |
|
|
|
|
T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; |
|
|
|
@ -298,10 +300,10 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M) |
|
|
|
|
} |
|
|
|
|
static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) |
|
|
|
|
{ |
|
|
|
|
mat4x4_dup(R, M); |
|
|
|
|
float s = 1.; |
|
|
|
|
vec3 h; |
|
|
|
|
|
|
|
|
|
mat4x4_dup(R, M); |
|
|
|
|
vec3_norm(R[2], R[2]); |
|
|
|
|
|
|
|
|
|
s = vec3_mul_inner(R[1], R[2]); |
|
|
|
@ -387,14 +389,15 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) |
|
|
|
|
/* TODO: The negation of of can be spared by swapping the order of
|
|
|
|
|
* operands in the following cross products in the right way. */ |
|
|
|
|
vec3 f; |
|
|
|
|
vec3 s; |
|
|
|
|
vec3 t; |
|
|
|
|
|
|
|
|
|
vec3_sub(f, center, eye);
|
|
|
|
|
vec3_norm(f, f);
|
|
|
|
|
|
|
|
|
|
vec3 s; |
|
|
|
|
vec3_mul_cross(s, f, up); |
|
|
|
|
vec3_norm(s, s); |
|
|
|
|
|
|
|
|
|
vec3 t; |
|
|
|
|
vec3_mul_cross(t, s, f); |
|
|
|
|
|
|
|
|
|
m[0][0] = s[0]; |
|
|
|
@ -470,9 +473,9 @@ static inline void quat_conj(quat r, quat q) |
|
|
|
|
r[3] = q[3]; |
|
|
|
|
} |
|
|
|
|
static inline void quat_rotate(quat r, float angle, vec3 axis) { |
|
|
|
|
int i; |
|
|
|
|
vec3 v; |
|
|
|
|
vec3_scale(v, axis, sinf(angle / 2)); |
|
|
|
|
int i; |
|
|
|
|
for(i=0; i<3; ++i) |
|
|
|
|
r[i] = v[i]; |
|
|
|
|
r[3] = cosf(angle / 2); |
|
|
|
|